www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Folgen
Folgen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folgen: Stimmt der Ansatz
Status: (Frage) beantwortet Status 
Datum: 21:32 Do 18.11.2010
Autor: TrockenNass

Aufgabe
Für eine komplexe Zahl [mm] (z_n)_{n\in\IN} [/mm] gilt: [mm] lim_{n\to \infty}z_n=z_0 [/mm] in [mm] \IC [/mm] genau dann, wenn [mm] lim_{n\to \infty}Re(z_n)=Re(z_0) [/mm] und [mm] lim_{n\to \infty}Im(z_n)=Im(z_0) [/mm]

Mein Ansatz:

Definition der Konvergenz in [mm] \IC: [/mm]

[mm] |z_n-z|<\varepsilon [/mm]
[mm] \Rightarrow |(Re(z_n)+Im(z_n))-(Re(z_0)+Im(z_0)|<\varepsilon [/mm]

[mm] \Rightarrow |Re(z_n)-Re(z_0)|< \bruch{\varepsilon}{2} [/mm]
[mm] \Rightarrow |Im(z_n)-Im(z_0)|< \bruch{\varepsilon}{2} [/mm]

Und da [mm] Re(z_n) [/mm] und [mm] Im(z_n) [/mm] gegen [mm] Re(z_0) [/mm] und [mm] Im(z_0) [/mm] konvergieren muss auch [mm] z_n [/mm] gegen [mm] z_0 [/mm] gehen.

Ist das brauchbar ???

        
Bezug
Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:50 Fr 19.11.2010
Autor: Gonozal_IX

Huhu,

brauchbar ist das insofern, als dass du die Rückrichtung der Äquivalenz damit bewiesen hast (warum?).

Fehlt noch die Hinrichtung.

MFG,
Gono.

Bezug
                
Bezug
Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:53 Fr 19.11.2010
Autor: TrockenNass

Also fang ich jetzt noch bei [mm] Im(z_n) [/mm] und [mm] Re(z_n) [/mm] an, und zeig das wenn die gegen [mm] z_0 [/mm] konvergieren, auch [mm] z_n [/mm] dagegen konvergieren muss

Bezug
                        
Bezug
Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:55 Fr 19.11.2010
Autor: Gonozal_IX

Nein, das ist doch die Rückrichtung:

Zeige [mm] $z_n \to z_0$ [/mm] und daraus musst du nun folgern, dass [mm] $Re(z_n) \to Re(z_0)$ [/mm] sowie das gleiche für den Imaginärteil gilt.

MFG,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]