www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Folgen
Folgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folgen: Grenzwerte
Status: (Frage) beantwortet Status 
Datum: 21:44 Sa 04.09.2010
Autor: Dante19

Aufgabe
[mm] \summe_{n=1}^{\infty} (\bruch{-1^{n}}{n+1}+(\bruch{2}{3})^{n}) [/mm]

Hi

ich muss hier bei der Aufgabe das Leibniz-Kriterium anwenden, habe da aber meine Schwierigkeiten

Ich weiß das leibnitzkriterium ist da, um bei alternieren reihen zu zeigen, ob diese konvergent ist oder nicht.
dabei müssen folgende drei bedingungen erfüllt sein:

1. alternierend
2. nullfolge
3. monotonie



Also wie muss ich da vorgehen um das Leibniz-Kriterium anzuwenden ??

Danke im Vorraus

        
Bezug
Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:08 Sa 04.09.2010
Autor: Marcel

Hallo,

> [mm]\summe_{n=1}^{\infty} (\bruch{-1^{n}}{n+1}+(\bruch{2}{3})^{n})[/mm]
>  
> Hi
>  
> ich muss hier bei der Aufgabe das Leibniz-Kriterium
> anwenden, habe da aber meine Schwierigkeiten
>
> Ich weiß das leibnitzkriterium ist da, um bei alternieren
> reihen zu zeigen, ob diese konvergent ist oder nicht.
> dabei müssen folgende drei bedingungen erfüllt sein:
>
> 1. alternierend
> 2. nullfolge
> 3. monotonie
>
>
>
> Also wie muss ich da vorgehen um das Leibniz-Kriterium
> anzuwenden ??

schau' ein wenig genauer hin:
Bei Dir steht da eine Reihe der Form
[mm] $$\sum c_n$$ [/mm]
mit
[mm] $$c_n=a_n+b_n\,.$$ [/mm]

Nun gilt der Satz
[mm] $$(\*)\;\;\;\sum a_n \text{ und }\sum b_n \text{ konvergent }\Rightarrow \sum c_n\equiv \sum {(a_n+b_n)}=\sum a_n+\sum b_n \text{ konvergent und die letzte Gleichheit gilt auch bzgl. der Reihenwerte}\,.$$ [/mm]

Bei Dir ist nun [mm] $a_n=\frac{(-1)^n}{n+1}$ [/mm] und [mm] $b_n=\left(\frac{2}{3}\right)^n\,,$ [/mm] daraus kann man sofort die Konvergenz von [mm] $\sum b_n$ [/mm] ablesen (Wurzelkriterium). Wenn Du nun zeigst, dass [mm] $\sum a_n$ [/mm] konvergiert, kannst Du [mm] $(\*)$ [/mm] oben benutzen (dann die Gleichungen "von rechts nach links" lesen).

Die Reihe [mm] $\sum a_n$ [/mm] ist eine alternierende (es ist [mm] $a_n=(-1)^n\tilde{a}_n$ [/mm] mit [mm] $\tilde{a}_n=\frac{1}{n+1}$). [/mm] Die Konvergenz von [mm] $\sum a_n$ [/mm] nach Leibnitz zu zeigen, heißt also nun nichts anderes mehr, als zu zeigen, dass die Folge
[mm] $$(\tilde{a}_n)_n\equiv\left(\frac{1}{n+1}\right)_n$$ [/mm]
Deine Bedingungen 2.) und 3.) erfüllt.

(Beachte: Deine Bedingungen 2.) und 3.) beziehen sich nicht mehr auf [mm] $(a_n)_n\,,$ [/mm] sondern auf [mm] $(\tilde{a}_n)_n\,.$) [/mm]

Und das sollte schnell nachzuweisen sein (eigentlich kann man - da das eine "so typische, bekannte Nullfolge" ist - da schon fast sagen, dass das "bekanntermaßen" richtig ist; aber es ist auch sehr schnell nochmal formal nachweisbar).

Beste Grüße,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]