www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - Folgen
Folgen < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folgen: Aufgaben
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:47 Mo 17.04.2006
Autor: Aeryn

Aufgabe 1
Gegeben ist die Folge [mm] (a_{n}) \infty_{n=0}, [/mm] wobei [mm] a_{n}= 7\bruch{3}{4}^{n}. [/mm]
a) ist die folge [mm] (a_{n}) \infty_{n=0} [/mm] monoton wachsend, monoton fallend, geometrisch, arithmetisch?
b) Berechnen Sie [mm] \summe 20_{n=0} a_{n} [/mm]  und [mm] \summe \infty_{n=0} a_{n}. [/mm]
c) Ist [mm] (a_{n}*a_{n+1}) \infty_{n=0} [/mm] eine geometrische Folge? (Begruendung)

Aufgabe 2
Gegeben ist die Folge [mm] (a_{n}) \infty_{n=0}, [/mm] wobei [mm] a_{n}= [/mm] 5n+2-n(n-1)(n-2).
a) ist die folge [mm] (a_{n}) \infty_{n=0} [/mm] arithmetisch?
b) Berechnen Sie [mm] \summe 249_{n=0} [/mm] (5n+2).
c) Ist [mm] (a_{n})\infty_{n=0} [/mm] monoton wachsend, monoton fallend oder keines von beiden? (Begruendung)

Servus!
Sogar an einem Ostermontag hat man zu lernen und Aufgaben zu machen ;), naja c'est la vie!
Ich glaub ich brauch sowas wie "Folgen und Reihen für Dummies", denn kapieren tu ich diese mathematische Hieroglyphen nicht!
Lg Aeryn.

        
Bezug
Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:55 Mo 17.04.2006
Autor: homme

Hallo,

ich denke, dass du mittels Induktion nachweisen kannst, ob diese Folge monoton fallend oder monoton steigend ist.
Die Induktion ist ein mathematisches Beweisverfahren, wo man von einem anschaulichen Fall auf das unendliche schließt.
Also man ermittelt die Werte für a(1) und a(2) und weißt dann nach dass für a(n+1) und a(n+2) dasselbe gilt.
Für den Rest deiner Aufgaben kann ich dir leider auch nicht weiterhelfen.

Bezug
        
Bezug
Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:24 Mo 17.04.2006
Autor: Walde

Hi aeryn,

dir fehlen glaube ich sämtliche Grundlagen (ist nicht böse gemeint), deshalb habe ich dir mal ein paar Links rausgesucht, die du gründlich studieren solltest. Natürlich sollten alle Informationen auch in deinem Vorlesungsskript (wenn ihr eins habt) zu finden sein.


[]Summenzeichen

[]arithmetische Folge

[]geometrische Folge

[]Monotonie

[]geometrische Reihe


Für 2. b noch fogender Tipp  [mm] \summe_{i=1}^{n}i=\bruch{n}{2}(n+1) [/mm]

L G walde

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]