www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Folgen
Folgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:53 Do 10.11.2005
Autor: musunoi

Hallo zusammen,

Aufgabe:
Zeige, dass (n!)n∈N schneller gegen Unendlich strebt als jede Exponentialfolge.

Ich muss noch weitere 5 änliche Aussagen beweisen, weiss leider nicht wie es geht. Kann mir jemand weiterhelfen?
Vielen Dank!
musunoi

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:50 Do 10.11.2005
Autor: Stefan

Hallo!

Die Frage ist ja immer, was man bei diesen Aufgaben so voraussetzen darf.

Aus der Konvergenz der Reihe

[mm] $\sum\limits_{n=0}^{\infty} \frac{a^n}{n!}$ [/mm]

folgt ja beispielsweise unmittelbar:

[mm] $\lim\limits_{n \to \infty} \frac{a^n}{n!} [/mm] =0$.

Die Frage ist also, was ihr bisher zu Folgen und Reihen gemacht habt und verwenden dürft.

Liebe Grüße
Stefan

Bezug
                
Bezug
Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:53 Do 10.11.2005
Autor: musunoi

Hallo Stefan,

bin mir nicht sicher, ob ich die Konvergenz der Reihen anwenden darf.
Was ich laut Skrpit weiss, ist folgendes:
Wir sagen, dass [mm] b_{n} [/mm]  schneller gegen Unendlich strebt als [mm] a_{n}, [/mm]
wenn auch noch [mm] b_{n}/a_{n} [/mm] → ∞ gilt; entsprechend strebt eine positive Nullfolge [mm] b_{n} [/mm] schneller gegen Null als eine andere [mm] a_{n}, [/mm] wenn auch noch [mm] b_{n}/a_{n} [/mm] → 0 gilt.
Ebenfalls weiss ich noch, dass:
Eine Folge [mm] a_{n}, n\in\IN [/mm] von  reelen Zahlen heißt Unendlichfolge, [mm] a_{n} [/mm] → ∞, wenn für jede gegebene (große) Schranke c ∈  [mm] \IR [/mm] alle Glieder bis auf endlich viele größer als c sind, wenn also zu c eine Nummer [mm] n_{0}(c) [/mm] ∈ N existiert
mit [mm] a_{n}> [/mm] c für alle n ≥ [mm] n_{0}(c). [/mm] Entsprechend heißt [mm] a_{n} [/mm] ∈N Nullfolge, [mm] a_{n} [/mm] → 0, wenn für jedes gegebene (kleine)  [mm] \varepsilon [/mm] > 0 alle bis auf endlich viele an dem Betrage nach kleiner als  [mm] \varepsilon [/mm] sind, wenn es also eine Nummer [mm] n_{0}( \varepsilon) [/mm] gibt mit [mm] |a_{n}| [/mm] <  [mm] \varepsilon [/mm] für alle n ≥ [mm] n_{0}( \varepsilon). [/mm]
Das sind schon viele Informationen, leider etwas zu theoretisch für mich, um sie in den Beweis anwenden zu wissen.

Danke & Gruß,
musunoi

Bezug
                        
Bezug
Folgen: Grenzwertsätze?
Status: (Antwort) fertig Status 
Datum: 07:39 Fr 11.11.2005
Autor: Loddar

Hallo musunoi!


Dürft Ihr denn die Grenzwertsätze verwenden?


Wenn [mm] $a_n$ [/mm] und [mm] $b_n$ [/mm] konvergent [mm] $\Rightarrow$ $\limes_{n\rightarrow\infty}a_n [/mm] * [mm] \limes_{n\rightarrow\infty}b_n [/mm] \ = \ [mm] \limes_{n\rightarrow\infty}\left(a_n*b_n\right)$ [/mm]


[mm] $\limes_{n\rightarrow\infty}\bruch{a^n}{n!} [/mm] \ = \ [mm] \limes_{n\rightarrow\infty}\bruch{\overbrace{a*a*a*...*a}^{n \ Faktoren}}{\underbrace{1*2*3*...*(n-1)*n}_{n \ Faktoren}} [/mm] \ = \ [mm] \limes_{n\rightarrow\infty}\left[\bruch{a}{1}*\bruch{a}{2}* ...* \bruch{a}{n-1}*\bruch{a}{n}\right]$ [/mm]

$= \ [mm] \limes_{n\rightarrow\infty}\bruch{a}{1}*\limes_{n\rightarrow\infty}\bruch{a}{2}*...*\limes_{n\rightarrow\infty} \bruch{a}{n-1}*\limes_{n\rightarrow\infty}\bruch{a}{n} [/mm] \ = \ [mm] a*\bruch{a}{2}*...*\red{0}*\red{0} [/mm] \ = \ 0$


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]