www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "z-transformation" - Folge finden Z-Transformation
Folge finden Z-Transformation < z-transformation < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "z-transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folge finden Z-Transformation: Idee?
Status: (Frage) beantwortet Status 
Datum: 15:11 So 26.06.2005
Autor: Becks

Hallo zusammen!

Wie man bei einer Folge herausfindet, ob sie Z-Transformierbar ist, meine ich verstanden zu haben. Aber wie man die Z-Transformierte aufstellt (siehe anderes Topic) oder für eine Z-Transformierte eine folge findet, da blicke ich nicht durch.
Ich habe zwei Z-Transformierte und soll dazu ne Folge finden.

1) [mm] (1+z²)*e^{-\bruch{1}{z}} [/mm]

2) [mm] \bruch{14z}{2z²+5z-3} [/mm]

Ich weiß nur, dass ich zu dieser Form: [mm] \summe_{n=0}^{+\infty}\bruch{a_{n}}{z^{n}} [/mm] kommen muss. Aber wie?

Habt ihr vielleicht eine Idee? Ich hab gar keine Idee wie ich auf die Summe komme bzw auf das [mm] z^{n}. [/mm]
Ich hoffe ihr könnt mir helfen. :)

Viele Grüße Becks

        
Bezug
Folge finden Z-Transformation: kleine Hilfestellung
Status: (Antwort) fertig Status 
Datum: 23:15 Mo 27.06.2005
Autor: kuroiya

Hallo Becks

Ich hab mir das mit der z-Transformation mal angeguckt und denke, das hier kann dir weiterhelfen:

zu a) Einfach einmal die Exponentialfunktion in Reihendarstellung schreiben:
[mm] exp(z)=\sum_{n=0}{\infty}\frac{z^n}{n!}. [/mm]

b) werde ich nun ein wenig detaillierter vorrechnen:

Wir haben ja die Formel [mm] \frac{14z}{2z^2 + 5z -3} [/mm]

Durch Partialbruchzerlegung erhalten wir:  [mm] \frac{14z}{2z^2 + 5z -3} [/mm] = [mm] 2z(\frac{2}{2z-1} [/mm] - [mm] \frac{1}{z + 3}) [/mm]

Dies können wir umformen auf [mm] 2(\frac{1}{1- \frac{1}{2z}} [/mm] - [mm] \frac{1}{1 - \frac{-3}{z}}) [/mm] und dadurch geometrische Reihen ansetzen:

[mm] 2(\frac{1}{1- \frac{1}{2z}} [/mm] - [mm] \frac{1}{1 - \frac{-3}{z}}) [/mm] = [mm] 2(\sum_{n=0}^{\infty}\frac{\frac{1}{2}^n}{z^n} [/mm] - [mm] \sum_{n=0}^{\infty}\frac{(-3)^n}{z^n}) [/mm] = [mm] \sum_{n=0}^{\infty}\frac{\frac{1}{2}^{n-1}- (-6)^n}{z^n} [/mm]

und schon haben wir die gewünschte Darstellung.

Bezug
                
Bezug
Folge finden Z-Transformation: Frage (für Interessierte)
Status: (Frage) für Interessierte Status 
Datum: 19:03 Di 28.06.2005
Autor: Becks

Erstmal ganz ganz vielen Dank für deine Antwort. :)
Ich hatte schon die Hoffnung aufgegeben.

a)
Ich habe mal deinen Rat befolgt und setze einfach gemäß Definition ein und erhalte:

[mm] (1+z²)*\summe_{n=0}^{\infty}\bruch{z^{n}}{n!} [/mm] Aber das ist ja noch nicht meine Folge oder? Muss ich das weiter vereinfachen?

b)
hmm, da blicke ich noch gar nicht durch. Also wenn ich den Weg sehe, dann ist das ganz schlüssig, aber welche Idee steckt dahinter. Nach was muss ich umformen, damit ich so ne Folge bekomme?

Nochmal was anderes: (ne Folge aus meinem anderen Thread)
[mm] (\bruch{n²+2n}{2^{n}})_{n} [/mm]
Ich weiß nicht, wie ich daraus die Z-Transformierte finden soll. Das muss ja ein geschlossener Ausdruck werden. Hast du da vielleicht auch noch ne Hilfe für mich?

Bin dir für deine Hilfe sehr dankbar!

Viele Grüße Becks

Bezug
                        
Bezug
Folge finden Z-Transformation: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:04 Fr 01.07.2005
Autor: matux

Hallo Becks!


Leider konnte Dir keiner hier mit Deinem Problem / Deiner Rückfrage in der von Dir vorgegebenen Zeit weiterhelfen.

Vielleicht hast Du ja beim nächsten Mal mehr Glück [kleeblatt] .


Viele Grüße,
Matux, der Foren-Agent

Allgemeine Tipps wie du dem Überschreiten der Fälligkeitsdauer entgegenwirken kannst findest du in den Regeln für die Benutzung unserer Foren.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "z-transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]