www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Folge
Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:00 Do 06.11.2008
Autor: soia

Aufgabe
Für die Folge [mm] (x_{n})_{n} \in \IN [/mm] gebe es ein q mit 0 < q < 1 und ein [mm] n_{0}(q), [/mm] so dass für n > [mm] n_{0}(q) [/mm] gilt: [mm] |x_{n+1}| [/mm] < [mm] q|x_{n}|. [/mm] Zeige [mm] (x_{n})_{n\in\IN} [/mm] ist Nullfolge

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo Matheraum.de

Ich verstehe die Aufgabe nicht so recht... :/
kann mir dabei irgendwie irgendwer weiter helfen ?

lg soia

        
Bezug
Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 02:40 Fr 07.11.2008
Autor: Fry

Hallo,

also ich weiß nicht, ob ihr die Aufgabe mit der [mm] \epsilon-Definition [/mm] lösen sollt.
Würde die Aufgabe jedenfalls so lösen (ohne E-Def.)

Also die Folge hat ja als erstes Folgenglied [mm] x_{0}. [/mm] Entsprechend der Abschätzung gilt ja dann: [mm] |x_{1}| [mm] |x_{2}| [mm] \Rightarrow [/mm] ...
[mm] \Rightarrow |x_{n}| Wegen der Betragsstriche gilt: [mm] 0<|x_{n}| Jetzt kann man die Grenzwerte für alle Ausdrücke berechnen:
des rechten Ausdrucks berechen:
[mm] \limes_{n\rightarrow\infty}0< \limes_{n\rightarrow\infty}|x_{n}|<\limes_{n\rightarrow\infty}q^n*|x_{0}| [/mm]
[mm] \limes_{n\rightarrow\infty}q^n*|x_{0}|=0, [/mm] da ja 0<q<1 [mm] (q^n [/mm] geometrische Folge!) und [mm] x_{0} [/mm] eine feste Zahl ist.
Da mit gilt:
0< [mm] \limes_{n\rightarrow\infty}|x_{n}|<0 [/mm]
Folglich ist [mm] \limes_{n\rightarrow\infty}|x_{n}|=0 [/mm]

Wenn die Folgenwerte nun nur aus [mm] \IN [/mm] kommen, dann sind die Betragsstriche egal und es gilt: [mm] \limes_{n\rightarrow\infty}x_{n}=0 [/mm]

Bin mir bei meinen Ausführungen aber nicht so sicher. Kann ja mal jemand anders kontrollieren.

Gruß
Christian



Bezug
                
Bezug
Folge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:45 Fr 07.11.2008
Autor: fred97


> Hallo,
>  
> also ich weiß nicht, ob ihr die Aufgabe mit der
> [mm]\epsilon-Definition[/mm] lösen sollt.
>  Würde die Aufgabe jedenfalls so lösen (ohne E-Def.)
>  
> Also die Folge hat ja als erstes Folgenglied [mm]x_{0}.[/mm]
> Entsprechend der Abschätzung gilt ja dann:
> [mm]|x_{1}|
>  [mm]|x_{2}|
>  [mm]\Rightarrow[/mm] ...
>  [mm]\Rightarrow |x_{n}|
>  Wegen der Betragsstriche
> gilt: [mm]0<|x_{n}|
>  Jetzt kann man die Grenzwerte für alle Ausdrücke
> berechnen:
>  des rechten Ausdrucks berechen:
>  [mm]\limes_{n\rightarrow\infty}0< \limes_{n\rightarrow\infty}|x_{n}|<\limes_{n\rightarrow\infty}q^n*|x_{0}|[/mm]
>  

Hier sollt beidemale [mm] "\le" [/mm] stehen


> [mm]\limes_{n\rightarrow\infty}q^n*|x_{0}|=0,[/mm] da ja 0<q<1 [mm](q^n[/mm]
> geometrische Folge!) und [mm]x_{0}[/mm] eine feste Zahl ist.
>  Da mit gilt:
> 0< [mm]\limes_{n\rightarrow\infty}|x_{n}|<0[/mm]


Ebenso [mm] \le [/mm]

FRED


>  Folglich ist [mm]\limes_{n\rightarrow\infty}|x_{n}|=0[/mm]
>  
> Wenn die Folgenwerte nun nur aus [mm]\IN[/mm] kommen, dann sind die
> Betragsstriche egal und es gilt:
> [mm]\limes_{n\rightarrow\infty}x_{n}=0[/mm]
>  
> Bin mir bei meinen Ausführungen aber nicht so sicher. Kann
> ja mal jemand anders kontrollieren.
>  
> Gruß
>  Christian
>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]