www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Folge
Folge < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:13 So 19.12.2004
Autor: Ursus

Hi Leute!

Ich hab mal wieder ein Problem bei dieser Aufgabe.

Es sei a eine rationale Zahl. Man gebe eine Folge aus lauter rationalen Zahlen an, die gegen  [mm] \wurzel[3]{a} [/mm] konvergiert.

Mein Vorschlag:
Ich habs mal mit dem Newton-Verfahren probiert und da komm ich auf folgende rekursiv definierte Folge:
[mm] x_{0} [/mm] = a
[mm] x_{n+1} [/mm] =  [mm] \bruch{1}{3} [/mm] (2x +  a/ [mm] x^{2} [/mm] )
Frage: Ist es egal, dass die Folge rekursiv definiert ist, weil, wenn man    einsetzt und ausrechnet bekommt man ja eine Folge mit lauter rationalen Zahlen, oder? Jetzt müsste ich nur noch zeigen, dass diese Formel gegen [mm] \wurzel[3]{a} [/mm] konvergiert, dann wäre ich fertig.

Sind hier meine Ansätze richtig?
Besten Dank fürs Helfen!
mfg URSUS

        
Bezug
Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 14:58 So 19.12.2004
Autor: Paulus

Hallo Ursus


>
> Es sei a eine rationale Zahl. Man gebe eine Folge aus
> lauter rationalen Zahlen an, die gegen  [mm]\wurzel[3]{a}[/mm]
> konvergiert.
>  
> Mein Vorschlag:
>  Ich habs mal mit dem Newton-Verfahren probiert und da komm
> ich auf folgende rekursiv definierte Folge:
>   [mm]x_{0}[/mm] = a
> [mm]x_{n+1}[/mm] =  [mm]\bruch{1}{3}[/mm] (2x +  a/ [mm]x^{2}[/mm] )

[ok] Das hätte ich wohl auch so gemacht. Allerdings die Formel etwas genauer hingeschrieben: rechts muss das x jeweils mit dem Index n versehen werden. Also so:
[mm] $x_{n+1}=\bruch{1}{3}(2x_n+\bruch{a}{x_{n}^2})$ [/mm]

Im weiteren müsste wohl noch die Fallunterscheidung gemacht werden: wenn $a_$ den Wert $0_$ hat, dann nehme man die konstante Folge
[mm] $x_n=0$ [/mm] für alle $n_$.

>  Frage: Ist es egal, dass die Folge rekursiv definiert ist,
> weil, wenn man    einsetzt und ausrechnet bekommt man ja
> eine Folge mit lauter rationalen Zahlen, oder? Jetzt müsste

[ok] Ja klar, die Aufgabe verlangt ja nicht, dass die einzelnen Glieder explizit angegeben werden. Und eine Folge darf nun mal rekursiv definiert werden. Das ist ganz legal!

> ich nur noch zeigen, dass diese Formel gegen [mm]\wurzel[3]{a}[/mm]
> konvergiert, dann wäre ich fertig.
>  
> Sind hier meine Ansätze richtig?

Ja, ich denke, das ist richtig!

Mit lieben Grüssen

Paul

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]