www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - Folge
Folge < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folge: Hänge
Status: (Frage) beantwortet Status 
Datum: 20:19 Mo 14.05.2007
Autor: KnockDown

Hi,

auch bei dieser Folge soll ich sehen ob Sie konvergiert und wenn ja gegen welchen Grenzwert.

[mm] $\bruch{2^{i-1}}{i!}$ [/mm]

$i [mm] \in \IN$ [/mm]


Leider habe ich hier keinen Ansatz :(



Grüße Thomas

        
Bezug
Folge: Bruch aufspalten
Status: (Antwort) fertig Status 
Datum: 20:27 Mo 14.05.2007
Autor: Loddar

Hallo Thomas!


Formen wir den Bruch mal etwas um und spalten ihn auf:

[mm] $a_i [/mm] \ = \ [mm] \bruch{2^{i-1}}{i!} [/mm] \ = \ [mm] \bruch{2}{2}*\bruch{2^{i-1}}{i!} [/mm] \ = \ [mm] \bruch{1}{2}*\bruch{2^i}{i!} [/mm] \ = \ [mm] \bruch{1}{2}*\bruch{\overbrace{2*2*2*...*2}^{i \text{ Faktoren}}}{\underbrace{1*2*3*...*i}_{i \text{ Faktoren}}} [/mm] \ = \ [mm] \bruch{1}{2}*\underbrace{\bruch{2}{1}*\bruch{2}{2}*\bruch{2}{3}*...*\bruch{2}{i}}_{i \text{ Faktoren}} [/mm] \ = \ ...$


Und nun mal diese Brüche einzeln betrachten ...


Gruß
Loddar


Bezug
                
Bezug
Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:50 Do 24.05.2007
Autor: KnockDown

Hi Loddar,

ich hab mir das angesehen, kann aber ein Schritt nicht nachvollziehen:




> Formen wir den Bruch mal etwas um und spalten ihn auf:
>  
> [mm]a_i \ = \ \bruch{2^{i-1}}{i!} \ = \ \red{\bruch{2}{2}}*\bruch{2^{i-1}}{i!} \ = \ \blue{\bruch{1}{2}}*\bruch{2^i}{i!} \ = \ \bruch{1}{2}*\bruch{\overbrace{2*2*2*...*2}^{i \text{ Faktoren}}}{\underbrace{1*2*3*...*i}_{i \text{ Faktoren}}} \ = \ \bruch{1}{2}*\underbrace{\bruch{2}{1}*\bruch{2}{2}*\bruch{2}{3}*...*\bruch{2}{i}}_{\green{i \text{ Faktoren}}} \ = \ ...[/mm]
>  
> Und nun mal diese Brüche einzeln betrachten ...


Wie kommt man von Schritt rot zu Schritt blau ?


Das ganze wird immer immer kleiner.... d. h. irgendwann geht es "gegen 0"




Stimmt das?



Danke




Grüße Thomas

Bezug
                        
Bezug
Folge: Potenzgesetz
Status: (Antwort) fertig Status 
Datum: 16:53 Do 24.05.2007
Autor: Loddar

Hallo Thomas!


Ich habe die $2_$ aus dem Zähler des 1. Bruches mit dem Zähler des 2. Bruches zusammengefasst gemäß MBPotenzgesetz:

[mm] $2*2^{i-1} [/mm] \ = \ [mm] 2^1*2{i-1} [/mm] \ = \ [mm] 2^{1+i-1} [/mm] \ = \ [mm] 2^i$ [/mm]


Und mit Deiner Vermutung bezüglich des Grenzwertes liegst Du richtig. Welcher der Faktoren (welcher Einzelbruch) ist dafür verantwortlich?


Gruß
Loddar


Bezug
                                
Bezug
Folge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:57 Do 24.05.2007
Autor: KnockDown


> Hallo Thomas!
>  
>
> Ich habe die [mm]2_[/mm] aus dem Zähler des 1. Bruches mit dem
> Zähler des 2. Bruches zusammengefasst gemäß
> MBPotenzgesetz:
>  
> [mm]2*2^{i-1} \ = \ 2^1*2{i-1} \ = \ 2^{1+i-1} \ = \ 2^i[/mm]
>  
>
> Und mit Deiner Vermutung bezüglich des Grenzwertes liegst
> Du richtig. Welcher der Faktoren (welcher Einzelbruch) ist
> dafür verantwortlich?
>  
>
> Gruß
>  Loddar
>  

Hi Loddar.

Ok, dann werd ich mir das jetzt erstmal ansehen, bevor ich die Aufgaben weiterrechne.


Danke!


Grüße Thomas

Bezug
                                
Bezug
Folge: Kann Potzenzgesetz nicht finde
Status: (Frage) beantwortet Status 
Datum: 18:56 Do 24.05.2007
Autor: KnockDown

Hi Loddar,

Sollte es so heißen? (vgl rot , blau)

[mm] $2*2^{i-1} [/mm] \ = \ [mm] 2^1*\red{2^{i-1}} [/mm] \ = \ [mm] 2^{1+i-1} [/mm] \ = \ [mm] 2^i$ [/mm]


Dann sähe das ganze mit Zwischenschritten so aus:

[mm] $\bruch{2^{i-1}}{i!}=\bruch{2^1}{2^1}*\bruch{2^{i-1}}{2*i!}=\bruch{2^1*2^{i-1}}{2*i!}=\bruch{2^{i\green{-1+1}}}{2*i!}=\bruch{2^i}{2*i!}=\bruch{1}{2}*\bruch{2^i}{i!}$ [/mm]


Noch zu der deiner Verständnisfrage:

So wollte ich es machen, so geht´s aber nicht:

[mm] $\bruch{2^i}{2*i!}$ [/mm] | [mm] $*\bruch{1}{2^i}$ [/mm]

[mm] $\bruch{2^i*\bruch{1}{2^i}}{(2*i!)*\bruch{1}{2^i}}$ [/mm]

[mm] $\bruch{1}{(2*i!)*\bruch{1}{2^i}}$ [/mm] Dann würde durch 0 geteilt werden das geht nicht.


Deshalb würd ich sagen, dass das jeweils letzte Glied deines auseinander gezogen Bruchs einen sehr kleinen Wert hat, und somit durch die Multiplikation mit einer ganz ganz ganz kleinen und einer "großen" Zahl eine sehr sehr kleine Zahl rauskommt, die gegen 0 geht oder?



Danke für super Hilfe!


Grüße Thomas








> Hallo Thomas!
>  
>
> Ich habe die [mm]2_[/mm] aus dem Zähler des 1. Bruches mit dem
> Zähler des 2. Bruches zusammengefasst gemäß
> MBPotenzgesetz:
>  
> [mm]2*2^{i-1} \ = \ 2^1*\blue{2{i-1}} \ = \ 2^{1+i-1} \ = \ 2^i[/mm]
>  
>
> Und mit Deiner Vermutung bezüglich des Grenzwertes liegst
> Du richtig. Welcher der Faktoren (welcher Einzelbruch) ist
> dafür verantwortlich?
>  
>
> Gruß
>  Loddar
>  


Bezug
                                        
Bezug
Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 01:05 Fr 25.05.2007
Autor: leduart

Hallo
sieh mal deine "grosse" Zahl an, die grösste ist 1! d.h. das ganze ist kleiner als 2/i!
mit so ungefähr Argumenten gross mal ganz klein sollte man nicht umgehen, sondern richtig abschätzen!
Gruss leduart

Bezug
                                                
Bezug
Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:01 Sa 26.05.2007
Autor: KnockDown

Hi leduart,

wäre eine gute Begründung wenn ich sage:

Die roten Zahlen kürzen sich weg und 2/2 ist vereinfach 1. Nach diesem zahl, kommen nur noch Brüche, die kleiner als 1 sind und somit läuft die Folge gegen Null?

[mm] $a_i [/mm] \ = \ [mm] \bruch{2^{i-1}}{i!} [/mm] \ = \ [mm] \bruch{2}{2}*\bruch{2^{i-1}}{i!} [/mm] \ = \ [mm] \bruch{1}{2}*\bruch{2^i}{i!} [/mm] \ = \ [mm] \red{\bruch{1}{2}}*\bruch{\overbrace{\red{2}*\green{2}*...*2}^{i \text{ Faktoren}}}{\underbrace{\red{1}*\green{2}*3*...*i}_{i \text{ Faktoren}}} [/mm] \ = \ [mm] \bruch{1}{2}*\underbrace{\bruch{2}{1}*\bruch{2}{2}*\bruch{2}{3}*...*\bruch{2}{i}}_{i \text{ Faktoren}} [/mm] \ = \ ...$> Hallo


>  sieh mal deine "grosse" Zahl an, die grösste ist 1! d.h.
> das ganze ist kleiner als 2/i!
>  mit so ungefähr Argumenten gross mal ganz klein sollte man
> nicht umgehen, sondern richtig abschätzen!
>  Gruss leduart



Danke Grüße Thomas

Bezug
                                                        
Bezug
Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 10:31 Sa 26.05.2007
Autor: MasterMG

Hi, KnockDown. Ich finde es wäre durchaus richtig, wenn du es so begründest, denn das ist ja nun mal recht einleuchtend. Es sei denn natürlich es wird von euch eindeutig anderes verangt......
MFG

Bezug
                                                        
Bezug
Folge: Grenzwertsatz
Status: (Antwort) fertig Status 
Datum: 10:47 Sa 26.05.2007
Autor: Loddar

Hallo Thomas!


Du kannst hier auch mit einem MBGrenzwertsatz argumentieren:

[mm] $\limes_{n\rightarrow\infty}\left(a_n*b_n\right) [/mm] \ = \ [mm] \limes_{n\rightarrow\infty}a_n*\limes_{n\rightarrow\infty}b_n$ [/mm]
(mit der Bedingung, dass [mm] $\limes_{n\rightarrow\infty}a_n$ [/mm] und [mm] $\limes_{n\rightarrow\infty}b_n$ [/mm] auch wirklich existieren)


Für Deine Aufgabe heißt das:

[mm] $\limes_{i\rightarrow\infty}a_i [/mm] \ = \ ... \ = \ [mm] \limes_{i\rightarrow\infty}\left(\bruch{1}{2}\cdot{}\bruch{2}{1}\cdot{}\bruch{2}{2}\cdot{}\bruch{2}{3}\cdot{}...\cdot{}\bruch{2}{i} \right) [/mm] \ = \ [mm] \limes_{i\rightarrow\infty}\bruch{1}{2}\cdot{}\limes_{i\rightarrow\infty}\bruch{2}{1}\cdot{}\limes_{i\rightarrow\infty}\bruch{2}{2}\cdot{}\limes_{i\rightarrow\infty}\bruch{2}{3}\cdot{}...\cdot{}\limes_{i\rightarrow\infty}\bruch{2}{i} [/mm] \ = \ ... $

Und welchen Grenzwert nimmt [mm] $\limes_{i\rightarrow\infty}\bruch{2}{i}$ [/mm] an? Was bedeutet das also für das Gesamtprodukt?


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]