www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Flächenkrümmung
Flächenkrümmung < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächenkrümmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:44 Di 27.06.2006
Autor: rainer9

Aufgabe
Zeige, daß die die Hauptkrümmungen der Fläche p(u,v) = [u*cos(v), u*sin(v), exp(v)] unterschiedliches Vorzeichen haben.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Mein Ansatz war zuerst die 1. und 2. Fundamentalform und die Normale zu berechnen:

E(u,v) = [mm] p_{u}² [/mm] = cos²(v)+sin²(v) + 0 = 1
F(u,v) = [mm] p_{u} p_{v} [/mm] = (cos(v)) (-sin(v))+ (sin(v)) (u cos(v)) + 0 = 0
G(u,v) = [mm] p_{v}² [/mm] = (-u sin(v))² + (u cos(v))² + (exp(v))² = u (sin²(v)+cos²(v)) + epx(2v) = u + exp(2v)

für die Normale erhalte ich:
n = [mm] p_{u} [/mm]  x [mm] p_{v} [/mm] / [mm] |p_{u} [/mm] x [mm] p_{v}| [/mm] = (cos v, sin v,0)x(-u sin v, u cos v, ev) /|( cos v, sin v,0)x(-u sin v, u cos v, exp(v))|
= (sin v · u cos v - 0, 0-cos v · exp(v), u·cos² v + u sin² v) /|(sin v · u cos v - 0, 0-cos v · exp(v), u·cos² v + u sin² v)|
= (u·sin v · cos v, -cos v · exp(v), u)/| (u·sin v · cos v, -cos v · exp(v), u)| = (u·sin v · cos v, -cos v · exp(v), u) /(u²·sin²v·cos²v+cos²v·exp(2v)+u²)

für die 2. Fundamentalform:
L = n [mm] p_{uu} [/mm] = n·(0,0,0) = 0
M = n [mm] p_{uv} [/mm] = n·(-sin v, cos v, 0) = (u·sin v · cos v, -cos v · exp(v), u) (-sin v, cos v), 0)/(u²·sin²v·cos²v+cos²v·exp(2v)+u²) = (-u sin²v · cos v –cos²v · exp(v)) / (u²·sin²v·cos²v+cos²v·exp(2v)+u²)
N = n [mm] p_{vv} [/mm] = n·(-u cos v,-u sin v,exp(v)) = (u·sin v · cos v, -cos v · exp(v), u) (-u cos v,-u sin v,exp(v)), 0)/(u²·sin²v·cos²v+cos²v·exp(2v)+u²) = (-u²·sin v·cos v+ u·cos v·sin v·exp(v) + u·exp(v)) / (u²·sin²v·cos²v+cos²v·exp(2v)+u²)

K = LN-M² / (EG-F²) = 0-(-u sin²v · cos v –cos²v · exp(v)) / (u²·sin²v·cos²v+cos²v·exp(2v)+u²) ·(u+exp(2v))

H = ½ · (EN-2FM+GL) /(EG-F²) = ½ (-u²·sin v·cos v+ u·cos v·sin v·exp(v)+u·exp(v)) / (u²·sin²v·cos²v+cos²v·exp(2v)+u²)·(u+exp(2v))

für die Hauptkomponenten:
kmax = H + sqrt(H²-K) = ½ (-u²·sin v·cos v+ u·cos v·sin v·exp(v)+u·exp(v)) / (u²·sin²v·cos²v+cos²v·exp(2v)+u²)·(u+exp(2v)) + sqrt ( (½ (-u²·sin v·cos v+ u·cos v·sin v·exp(v)+ u·exp(v)) / (u²·sin²v·cos²v+cos²v·exp(2v)+u²)·(u+exp(2v)))² + (-u sin²v · cos v –cos²v · exp(v)) / (u²·sin²v·cos²v+cos²v·exp(2v)+u²) ·(u+exp(2v)))

kmin = H – sqrt(H²-K) = ½ (-u²·sin v·cos v+ u·cos v·sin v·exp(v)+ u·exp(v)) / (u²·sin²v·cos²v+cos²v·exp(2v)+u²)·(u+exp(2v))  - sqrt ( (½ (-u²·sin v·cos v+ u·cos v·sin v·exp(v)+u·exp(v)) / (u²·sin²v·cos²v+cos²v·exp(2v)+u²)·(u+exp(2v)))² + (-u sin²v · cos v –cos²v · exp(v)) / (u²·sin²v·cos²v+cos²v·exp(2v)+u²) ·(u+exp(2v)))

Eine weitere Vereinfachung konnte ich nicht finden. Ich würde argumentieren, daß der Term unter der Wurzel in beiden Fällen der gleiche und sqrt(H²+etwas positives) >= H sein muß. Da also einmal subtrahiert und einmal addiert wird, müssen die Hauptkrümmungen verschiedene Vorzeichen haben - ganz überzeugend ist das aber nicht: Es muß wohl eine bessere Lösung geben?

        
Bezug
Flächenkrümmung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:40 Di 27.06.2006
Autor: MatthiasKr

Hallo rainer,

du kannst deine rechnungen zumindest noch etwas reduzieren.  du musst eigentlich nur das vorzeichen der Gauss-Krümmung (in deiner rechnung das K, nehme ich an)berechnen, die ja das produkt der hauptkrümmungen ist. wenn du negative gauss-krümmung erhältst, ist die aufgabe erledigt.

vielleicht gehts auch noch eleganter, mir fällt aber momentan nix besseres ein.

Gruß
Matthias

Bezug
        
Bezug
Flächenkrümmung: danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:04 Di 27.06.2006
Autor: rainer9

Ich hatte noch einen Fehler in meinem Ansatz. Jetzt komme ich auf folgende Gauß'sche Krümmung, die tatsächlich kleiner 0 sein müßte:

K = LN-M² / (EG-F²) = 0- (-exp(v)/sqrt(exp(2v)+u²))² / (u²+exp(2v))
= - (exp(2v)/((exp(2v)+u²)(exp(2v)+u²)) =  - (exp(2v)/(exp(2v)+u²)²) = - (exp(v)/(exp(2v)+u²))² < 0


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]