www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Flächenintegral 1.Art
Flächenintegral 1.Art < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächenintegral 1.Art: Parametrisierung bestimmen
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 19:45 Do 05.02.2009
Autor: BlubbBlubb

Aufgabe
Man berechne das Flächenintegral [mm] \integral_S [/mm] f dS über das Flächenstück S des Paraboloids z= [mm] 2-x^2-y^2, [/mm] das sich oberhalb der (x,y)-Ebene befindet, für die folgenden Funktionen f:S -> |R:

f(x,y,z):=1

Flächenintegral 1.Art:

[mm] \integral_S [/mm] f dS = [mm] \integral \integral_K [/mm] f( [mm] \gamma(r,\phi)) [/mm] * [mm] |N_\gamma [/mm] | dr [mm] d\phi [/mm]

einige beobachtungen von mir :
0 [mm] \le [/mm] z  [mm] \le [/mm] 2

[mm] x^2 [/mm] + [mm] y^2 [/mm] = [mm] r^2 [/mm]

[mm] x^2 [/mm] + [mm] y^2 [/mm] = 2-z

[mm] r^2 [/mm] = 2-z

[mm] r=\wurzel{2-z} [/mm]



nun weiter:

K={ (x,y,z) [mm] \in R^3 [/mm] | z = 2 - [mm] x^2 -y^2 [/mm] , z [mm] \le [/mm] 0}

K={ ( [mm] rcos(\phi) [/mm] , [mm] rsin(\phi), [/mm] z ) [mm] \in R^3 [/mm] | 0 [mm] \le [/mm] z [mm] \le [/mm] 2 , r = [mm] \wurzel{2-z}, [/mm]  0 [mm] \le \phi [/mm] \ le [mm] 2\pi [/mm] }

das sind einige gedankengänge von mir.

genau genommen weiß ich selbst noch nicht so genau was ich mache, ich versuche mich grad stückweise vorzurobben.

es würde mir erstmal sehr helfen wenn ihr mir sagen würdet wie ich an die parametrisierung [mm] \gamma [/mm] komme die in der formel verlangt wird


        
Bezug
Flächenintegral 1.Art: Antwort
Status: (Antwort) fertig Status 
Datum: 20:16 Do 05.02.2009
Autor: Al-Chwarizmi

Aufgabe
Man berechne das Flächenintegral [mm]\integral_S[/mm] f dS über das Flächenstück S
des Paraboloids z= [mm]2-x^2-y^2,[/mm] das sich oberhalb der (x,y)-Ebene befindet,

für die folgende Funktion f:S -> [mm] \IR: [/mm]      f(x,y,z):=1


Mit anderen Worten ist also einfach der Flächen-
inhalt der Paraboloid-Kappe gesucht ?

>  Flächenintegral 1.Art:
>  
> [mm]\integral_Sf dS = \integral \integral_K f( \gamma(r,\phi))* |N_\gamma|\ dr\ d\phi[/mm]
>  
> einige Beobachtungen von mir :

>  0 [mm]\le z \le[/mm] 2
>  
> [mm]x^2+y^2\ =\ r^2[/mm]
>  
> [mm]x^2+y^2\ =\ 2-z [/mm]
>
> [mm]r^2\ =\ 2-z[/mm]
>  
> [mm]r\ =\ \wurzel{2-z}[/mm]
>  
>  
> nun weiter:
>  
> $\ [mm] K=\{ (x,y,z) \in \IR^3\ |\ z\ =\ 2 - x^2 -y^2, z \le 0\}$ [/mm]
>  
> $\ [mm] K=\{ ( r*cos(\phi), r*sin(\phi),\,z )\in \IR^3\ |\ 0 \le z \le 2 ,\ r = \wurzel{2-z}\,,\ 0\le \phi \le 2*\pi \}$ [/mm]
>
> das sind einige Gedankengänge von mir.
>
> genau genommen weiß ich selbst noch nicht so genau was ich
> mache, ich versuche mich grad stückweise vorzurobben.
>
> es würde mir erstmal sehr helfen wenn ihr mir sagen würdet
> wie ich an die parametrisierung [mm]\gamma[/mm] komme die in der
> formel verlangt wird

Die hast du ja im Wesentlichen schon beisammen:

$\ [mm] x=r*cos(\phi)$ [/mm]
$\ [mm] y=r*sin(\phi)$ [/mm]
$\ [mm] z=2-x^2-y^2$ [/mm]    (hier x und y durch r und [mm] \phi [/mm] darstellen, wird ganz einfach !)

Der nächste Schritt ist die Bestimmung des Normalen-
Vektors N.

LG


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]