www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Flächeninhalt einer Asteroide
Flächeninhalt einer Asteroide < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächeninhalt einer Asteroide: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:35 So 01.08.2010
Autor: Megumi

Aufgabe
Berechnen Sie den Flächeninhalt folgender Asteroide:

x = a [mm] cos^3 [/mm] t
y = a [mm] sin^3 [/mm] t

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,
ich soll den Flächeninhalt dieser Asteroide berechnen, finde aber kein Ansatz, da ich davon ausgehe, dass das Integral [mm] \integral_{}^{}{yx'dt}, [/mm] wegen der Form der Zissoide, 0 sein wird. Hat jemand einen anderen Ansatz für mich?

        
Bezug
Flächeninhalt einer Asteroide: Antwort
Status: (Antwort) fertig Status 
Datum: 12:01 So 01.08.2010
Autor: abakus


> Berechnen Sie den Flächeninhalt folgender Asteroide:
>  
> x = a [mm]cos^3[/mm] t
>  y = a [mm]sin^3[/mm] t
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hallo,
>  ich soll den Flächeninhalt dieser Asteroide berechnen,
> finde aber kein Ansatz, da ich davon ausgehe, dass das
> Integral [mm]\integral_{}^{}{yx'dt},[/mm] wegen der Form der
> Zissoide, 0 sein wird. Hat jemand einen anderen Ansatz für
> mich?

Hallo,
laut Wikipedia ( http://de.wikipedia.org/wiki/Astroide ) gibt es eine einfache Flächenformel.
Falls diese hergeleitet werden muss, würde ich versuchen, ein Viertel der Fläche (alles, was im 1. Quadranten liegt) als Integral der Funktion [mm] y=(a^\bruch{2}{3}-x^\bruch{2}{3})^{1,5} [/mm] in den Grenzen von 0 bis a zu berechnen.
Ich überblicke im Moment nicht, ob dieses Integral mit elementaren Mittel ohne Riesenaufwand lösbar ist; vielleicht ist auch ein Ansatz mit Polarkoordinaten sinnvoller.
Gruß Abakus


Bezug
        
Bezug
Flächeninhalt einer Asteroide: Antwort
Status: (Antwort) fertig Status 
Datum: 12:12 So 01.08.2010
Autor: schachuzipus

Hallo Megumi,

> Berechnen Sie den Flächeninhalt folgender Asteroide:
>  
> x = a [mm]cos^3[/mm] t
>  y = a [mm]sin^3[/mm] t
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hallo,
>  ich soll den Flächeninhalt dieser Asteroide berechnen,
> finde aber kein Ansatz, da ich davon ausgehe, dass das
> Integral [mm]\integral_{}^{}{yx'dt},[/mm] wegen der Form der
> Zissoide, 0 sein wird. Hat jemand einen anderen Ansatz für
> mich?

Wieso sollte das 0 werden?

Du hast oben doch schön die Parametrisierung gegeben.

Es ist [mm] $x(t)=a\cdot{}\cos^3(t)$, $y(t)=a\cdot{}\sin^3(t)$ [/mm]

Also [mm] $\dot x=x'(t)=-3a\cdot{}\cos^2(t)\cdot{}\sin(t)$ [/mm]

Damit berechne mal [mm] $\left|\int\limits_{0}^{2\pi}{y(t)\cdot{}x'(t) \ dt}\right|$ [/mm]

Das führt zu [mm] $3a^2\int\limits_{0}^{2\pi}{\sin^4(t)\cos^2(t) \ dt}$ [/mm]

DERIVE sagt, da kommt wie gewünscht [mm] $\frac{3}{8}a^2\pi$ [/mm] raus.

Das Integral wirst du wohl partiell und/oder mit Additionstheoremen kleinkriegen.

Habe ich aber nicht händisch gemacht - ist ja deine Aufgabe ;-)

Gruß

schachuzipus


Bezug
        
Bezug
Flächeninhalt einer Asteroide: Antwort
Status: (Antwort) fertig Status 
Datum: 12:46 So 01.08.2010
Autor: weduwe

mit deinem ansatz komme ich für die 1/4-fläche auf [mm] A=\frac{3a^2\pi}{32} [/mm] :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]