www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Flächeninhalt - "k"
Flächeninhalt - "k" < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächeninhalt - "k": Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:28 So 21.01.2007
Autor: trination

Aufgabe
Durch [mm] f(x)=e^x [/mm] (x€R) und g(x)x+1 (x€R) sind 2 Funktion gegeb. Es sei h(x)=f(x)*g(x).

Jde Parallele zux y-Achse mit der Gleichung x=k; k€R; k<-1, begrenzt zusammen mit der x-Achse und den Grafen von "h" eine Fläche [mm] A_{k} [/mm] vollständig.

Berechnen Sie den Inhalt der Fläche [mm] A_{k} [/mm] in Abhängigkeit von k.

[mm] H(x)=xe^x [/mm]

Jetzt bin ich mir nur unsicher was ich für Grenzen einsetzen muss, da die ja kleiner als "-1" sein müssen.

        
Bezug
Flächeninhalt - "k": Antwort
Status: (Antwort) fertig Status 
Datum: 14:35 So 21.01.2007
Autor: Stefan-auchLotti

[mm] $\rmfamily \text{Hi.}$ [/mm]

> Durch [mm]f(x)=e^x[/mm] (x€R) und g(x)x+1 (x€R) sind 2 Funktion
> gegeb. Es sei h(x)=f(x)*g(x).
>  
> Jde Parallele zux y-Achse mit der Gleichung x=k; k€R; k<-1,
> begrenzt zusammen mit der x-Achse und den Grafen von "h"
> eine Fläche [mm]A_{k}[/mm] vollständig.
>
> Berechnen Sie den Inhalt der Fläche [mm]A_{k}[/mm] in Abhängigkeit
> von k.
>  [mm]H(x)=xe^x[/mm]

[notok]

[mm] $\rmfamily \text{Du hast das Distributivgesetz missachtet.}$ [/mm]

[mm] $\rmfamily [/mm] a*(b+c)=a*b+a*c$

[mm] $\rmfamily h\left(x\right)=e^x*\left(x+1\right)=e^x*x+e^x$ [/mm]

>  
> Jetzt bin ich mir nur unsicher was ich für Grenzen
> einsetzen muss, da die ja kleiner als "-1" sein müssen.  

[mm] $\rmfamily \text{Die Funktion }h\left(x\right)\text{ hat bei }x=-1\text{ eine Nullstelle. Jetzt klar?}$ [/mm]

[mm] $\rmfamily \text{Gruß, Stefan.}$ [/mm]

Bezug
                
Bezug
Flächeninhalt - "k": Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:38 So 21.01.2007
Autor: trination

Ich glaub du hast da was missachtet.

[mm] H(x)=xe^x [/mm]  ist in der Aufgabe bereits gegeben.

>...

Grenzen: -1 und k?

Bezug
                        
Bezug
Flächeninhalt - "k": Grenzen richtig
Status: (Antwort) fertig Status 
Datum: 14:41 So 21.01.2007
Autor: Loddar

Hallo trination!


> Grenzen: -1 und k?

[ok] Wobei der Wert $k_$ die untere Integrationsgrenze darstellt.


Gruß
Loddar


Bezug
                                
Bezug
Flächeninhalt - "k": Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:48 So 21.01.2007
Autor: trination

[mm] (k*e^k)-(-1*e^{-1}) [/mm]

Hm sieht ja lustig aus...kann ich vereinfachen?

Bezug
                                        
Bezug
Flächeninhalt - "k": nicht viel ...
Status: (Antwort) fertig Status 
Datum: 14:53 So 21.01.2007
Autor: Loddar

Hallo trination!


Viel kannst Du nicht vereinfachen ... höchstens die Klammern auflösen zu:

$... \ = \ [mm] k*e^k+\bruch{1}{e}$ [/mm]


Gruß
Loddar


Bezug
                                                
Bezug
Flächeninhalt - "k": Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:55 So 21.01.2007
Autor: trination

Und das ist der "Flächeninhalt" ? Sieht echt komisch aus.

Bezug
                                                        
Bezug
Flächeninhalt - "k": Antwort
Status: (Antwort) fertig Status 
Datum: 15:00 So 21.01.2007
Autor: Stefan-auchLotti


> Und das ist der "Flächeninhalt" ? Sieht echt komisch aus.

[mm] $\rmfamily \text{Jop.}$ [/mm]

[mm] $\rmfamily \text{In der Aufgabenstellung steht: Sei }h\left(x\right)=f\left(x\right)*g\left(x\right)\text{.}$ [/mm]

[mm] $\rmfamily \text{Und wieso ist }h\left(x\right)\text{ dann gegeben, wenn es eingentlich das Produkt aus }f\text{ und }g\text{ ist??}$ [/mm]

[mm] $\rmfamily \text{Stefan.}$ [/mm]

Bezug
                                                                
Bezug
Flächeninhalt - "k": Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:02 So 21.01.2007
Autor: trination

Die Stammfunktion ist gegeben mit [mm] H(x)=xe^x [/mm]

Bezug
        
Bezug
Flächeninhalt - "k": Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:01 So 21.01.2007
Autor: Stefan-auchLotti

[mm] $\rmfamily \text{Ach so, alles klar, das ist ja schon die Stammfunktion.}$ [/mm]

[mm] $\rmfamily \text{Stefan.}$ [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]