www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Flächenberechnung
Flächenberechnung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächenberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:27 Mi 18.03.2009
Autor: starkurd

Hallo alle zusammen,

ich habe folgende Fkt. gegeben:
[mm] f(x)=1/8x^4+1/2x^3 [/mm]

habe jetzt hierzu die Wendetangente ermittelt:
g(x)=2x+2

Nun soll ich die Fläche zwischen den Fkten ermitteln!
Anhand meiner Skizze bin ich mir jetzt nicht sicher ob nur die "rechte Fläche" gemeint ist oder die auch die "linke Fläche"?

Gibt es da etwas das meine Entscheidung erleichtert und in Zukunft mich nicht mehr daran zweifeln lässt?

Vielen Dank im Voraus
MFG
starkurd

        
Bezug
Flächenberechnung: beide Flächen
Status: (Antwort) fertig Status 
Datum: 14:30 Mi 18.03.2009
Autor: Roadrunner

Hallo starkud!


Da es hier laut Aufgabenstellung nicht weiter eingeschränkt ist, musst Du hier wohl beide Teilflächen (separat) berechnen.


Gruß vom
Roadrunner


Bezug
                
Bezug
Flächenberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:41 Mi 18.03.2009
Autor: starkurd

Hallo,

danke für die Info.

Zum nächsten Problemfall: :-)

Ich soll prüfen,ob die Wendetangente in W(-2/-2) die Fkt in P(2/6) schneidet.
Um zu prüfen,ob die Wndetangente überhaupt in W(-2/-2) ist habe ich einfach den x-Wert von W in die Fkt-gleichung der Wendetangente eingesetzt und habe als Ergebnis -2 erhalten!
Das ist mir noch klar.
Jetzt habe ich für den "Beweis" von P(2/6) mir gedacht,ich setze beide Funktionen gleich,welches dann so aussieht bei mir:
[mm] 1/8x^4+1/2x^3-2x-2=0 [/mm]

Hier hänge ich nun fest...

Vielen Dank im Voraus


Bezug
                        
Bezug
Flächenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:25 Mi 18.03.2009
Autor: fred97


> Hallo,
>  
> danke für die Info.
>  
> Zum nächsten Problemfall: :-)
>  
> Ich soll prüfen,ob die Wendetangente in W(-2/-2) die Fkt in
> P(2/6) schneidet.
>  Um zu prüfen,ob die Wndetangente überhaupt in W(-2/-2) ist
> habe ich einfach den x-Wert von W in die Fkt-gleichung der
> Wendetangente eingesetzt und habe als Ergebnis -2
> erhalten!
>  Das ist mir noch klar.
>  Jetzt habe ich für den "Beweis" von P(2/6) mir gedacht,ich
> setze beide Funktionen gleich,welches dann so aussieht bei
> mir:
>  [mm]1/8x^4+1/2x^3-2x-2=0[/mm]

Wie man durch einsetzen sieht, ist 2 eine Lösung dieser Gleichung.

Aber warum so umständlich ?

mit $f(x) = [mm] 1/8x^4+1/2x^3$ [/mm] und $g(x) = 2x+2$ sieht man sofort:

            f(2) = 6 und g(2) = 6

FRED



>  
> Hier hänge ich nun fest...
>  
> Vielen Dank im Voraus
>  


Bezug
                                
Bezug
Flächenberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:32 Mi 18.03.2009
Autor: starkurd

Hallo fred,

vielen dank für die Unterstützung.

Mein Gedanke war einfach nur der Reiz,die beiden Punkte zu ermitteln :-)

gruß
starkurd

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]