Fläche unter einem Graphen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:35 Mo 07.12.2009 | Autor: | Acharry |
Aufgabe | Berechne die Fläche, die von den beiden Graphen mit der x achse eingeschlossen wird. f(x) = [mm] 4x^2 [/mm] - 5x + 3 g(x) = [mm] 2x^2 [/mm] - 3x + 15 |
Ich habe die beiden funktionen f(x) und g(x) gleichgesetzt die Nullstellen x = 3 und x = -2 mithilfe der p-q-Formel berechnet und dann die stammfunktionen der beiden Funktionen integriert mit den grenzen 3 und -2.
DAS PROBLEM ich bekomme jedes mal wenn ich mit dem taschenrechner da nachrechne einen anderen wert bei raus 115 1/2 ; 90 5/6 ; 125 rausgekriegt aber es müsste wenn sich der Lehrer nicht irrt ungefähr 41,67 rauskommen. kann mir einer der rechenweg nach dem brechnen der NST aufschreiben, damit ich mich über den fehler in meinem heft oder meine unfähigkeit das richtig einzutippen aufrägen kann ;) danke.
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 20:37 Mo 07.12.2009 | Autor: | Acharry |
Aufgabe | dies ist die RICHTIGE aufgabenstellung
Gesucht ist die Fläche die von den beiden graphen eingeschlossen wird. |
D
|
|
|
|
|
Hallo,
um auf den Wert zu kommen berechne die Nullstellen von h(x)=g(x)-f(x). Es kommen ganze Zahlen heraus. Und dann h(x) einfach integrieren und die Grenzen (NST) einsetzen.
Die Aufgabenstellung ist doch schon etwas seltsam.
Gruß
|
|
|
|
|
> Berechne die Fläche, die von den beiden Graphen mit der x
> achse eingeschlossen wird. f(x) = [mm]4x^2[/mm] - 5x + 3 g(x) =
> [mm]2x^2[/mm] - 3x + 15
> Ich habe die beiden funktionen f(x) und g(x) gleichgesetzt
> die Nullstellen x = 3 und x = -2 mithilfe der p-q-Formel
> berechnet und dann die stammfunktionen der beiden
> Funktionen integriert mit den grenzen 3 und -2.
hallo, so wie die aufgabe da steht, hat sie nicht viel sinn.. denn zusammen schließen sie keine fläche mit der x-achse ein (denn beide sind oberhalb davon und nach oben geöffnet). erst die differenzfunktion h(x)=f(x)-g(x) grenzt ne fläche mit der x-achse ab
>
> DAS PROBLEM ich bekomme jedes mal wenn ich mit dem
> taschenrechner da nachrechne einen anderen wert bei raus
> 115 1/2 ; 90 5/6 ; 125 rausgekriegt aber es müsste wenn
> sich der Lehrer nicht irrt ungefähr 41,67 rauskommen. kann
> mir einer der rechenweg nach dem brechnen der NST
> aufschreiben, damit ich mich über den fehler in meinem
> heft oder meine unfähigkeit das richtig einzutippen
> aufrägen kann ;) danke.
der wert deines lehrers stimmt. im übrigen ist weder für die stammfunktion noch für das einsetzen der grenzen ein taschenrechner nötig.
zu guter letzt: wenn du einen fehler in deiner rechnung wissen möchtest, dann rechnest du vor!
gruß tee
|
|
|
|