www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Fkt. f: \IZ \to \IN x \IN
Fkt. f: \IZ \to \IN x \IN < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fkt. f: \IZ \to \IN x \IN: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:19 Fr 06.12.2013
Autor: Inno1001

Aufgabe
Zeigen Sie, dass es eine bijektive Funktion f: [mm] \IZ \to \IN [/mm] x [mm] \IN [/mm] gibt.

Hey,

mein Gedankengang dazu war, da die Funktion ja bijektiv ist, reicht es [mm] f^{-1} [/mm] zufinden, sodas dann die Funktion von [mm] \IN [/mm] x [mm] \IN \to \IZ [/mm] geht.
Weiter weiß ich unter Verwendung einer anderen Aufgabe, dass es von [mm] \IN \to \IZ [/mm] eine bijektive Funktion gibt.
D.h. es bliebe eigendlich nur zu zeigen, dass es eine bijektive Funktion von [mm] \IN [/mm] x [mm] \IN \to \IN [/mm] gibt?
Das könnte ich aber wieder unterverwendung der Bijektion umdrehen und sagen es reicht eine bijektive Funktion von [mm] \IN \to \IN [/mm] x [mm] \IN [/mm] zu finden.

Stimmt das soweit?

Gruß, Inno

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Fkt. f: \IZ \to \IN x \IN: Antwort
Status: (Antwort) fertig Status 
Datum: 15:34 Fr 06.12.2013
Autor: Al-Chwarizmi


> Zeigen Sie, dass es eine bijektive Funktion f: [mm]\IZ \to \IN\times\IN[/mm]
> gibt.
>  Hey,
>  
> mein Gedankengang dazu war, da die Funktion ja bijektiv
> ist, reicht es [mm]f^{-1}[/mm] zufinden, sodas dann die Funktion von
> [mm]\IN[/mm] x [mm]\IN \to \IZ[/mm] geht.
>  Weiter weiß ich unter Verwendung einer anderen Aufgabe,
> dass es von [mm]\IN \to \IZ[/mm] eine bijektive Funktion gibt.
>  D.h. es bliebe eigendtlich nur zu zeigen, dass es eine
> bijektive Funktion von [mm]\IN[/mm] x [mm]\IN \to \IN[/mm] gibt?
> Das könnte ich aber wieder unterverwendung der Bijektion
> umdrehen und sagen es reicht eine bijektive Funktion von
> [mm]\IN \to \IN[/mm] x [mm]\IN[/mm] zu finden.
>  
> Stimmt das soweit?
>  
> Gruß, Inno


Hallo Inno,

ja, das stimmt. Fehlt natürlich nur noch die Hauptaufgabe,
nämlich eben z.B. eine solche Funktion der letzten Art
konkret zu definieren oder eben wenigstens ihre Existenz
zu beweisen.

LG ,  Al-Chw.




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]