www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Fixpunktsatz Banach
Fixpunktsatz Banach < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fixpunktsatz Banach: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:53 Mo 09.07.2012
Autor: kullinarisch

Aufgabe
Sei [mm] f:\IC\to\IC, [/mm] f(z)=z²+i/4. Finde eine Kreisscheibe, auf der f kontrahierend ist. Sei [mm] z_1=0 [/mm] und [mm] z_{n+1}=f(z_n). [/mm] Untersuche, ob die Folge [mm] (z_n) [/mm] konvergiert, und bestimme gegebenenfalls den Grenzwert.

Hallo zusammen. Nach dem Fixpunktsatz von Banach konvergiert die Folge [mm] (z_n) [/mm] ja genau dann gegen den Fixpunkt von f, wenn f eine Kontraktion (auf..) ist. So wie ich das verstehe, muss man sich hier selber einen Definitionsbereich D basteln, s.d. f: [mm] D\to [/mm] D eine Kontraktion ist. Wie soll man denn hier vorgehen? Soll man sich einen beliebigen Punk [mm] z_0 \in\IC [/mm] aussuchen und dann schauen, welchen Radius r man benötigt, damit f auf [mm] B_r(z_0)=\{z \in\IC :|z-z_0|
Mit [mm] B_r(z_0)=\{z \in\IC :|z-z_0|
Ich bin hier leicht überfordert. Sonst war der Definitionsbereich nämlich immer vorgegeben und die Zahlen reell...

Grüße, kulli

        
Bezug
Fixpunktsatz Banach: Antwort
Status: (Antwort) fertig Status 
Datum: 14:10 Mo 09.07.2012
Autor: fred97


> Sei [mm]f:\IC\to\IC,[/mm] f(z)=z²+i/4. Finde eine Kreisscheibe, auf
> der f kontrahierend ist. Sei [mm]z_1=0[/mm] und [mm]z_{n+1}=f(z_n).[/mm]
> Untersuche, ob die Folge [mm](z_n)[/mm] konvergiert, und bestimme
> gegebenenfalls den Grenzwert.
>  Hallo zusammen. Nach dem Fixpunktsatz von Banach
> konvergiert die Folge [mm](z_n)[/mm] ja genau dann gegen den
> Fixpunkt von f, wenn f eine Kontraktion (auf..) ist. So wie
> ich das verstehe, muss man sich hier selber einen
> Definitionsbereich D basteln, s.d. f: [mm]D\to[/mm] D eine
> Kontraktion ist.

Dabei sollte D abgeschlossen sein !


> Wie soll man denn hier vorgehen? Soll man
> sich einen beliebigen Punk [mm]z_0 \in\IC[/mm] aussuchen und dann
> schauen, welchen Radius r man benötigt, damit f auf
> [mm]B_r(z_0)=\{z \in\IC :|z-z_0|


Oben ist doch vom [mm] z_1=0 [/mm] die Rede. Daher würde ich für D eine abgeschlossene Kreisscheibe um 0 mit Radius r nehmen.

Wie kommt man zu r ?

So:

Für z,w [mm] \in [/mm] D ist

        $  [mm] |f(z)-f(w)|=|z^2-w^2|=|z+w|*|z-w| \le [/mm] (|z|+|w|)*|z-w| [mm] \le [/mm] 2r|z-w|$.

Machts klick ?

FRED

>  
> Mit [mm]B_r(z_0)=\{z \in\IC :|z-z_0|
> den Punkt [mm]z_0[/mm] mit Radius r.
>
> Ich bin hier leicht überfordert. Sonst war der
> Definitionsbereich nämlich immer vorgegeben und die Zahlen
> reell...
>  
> Grüße, kulli


Bezug
                
Bezug
Fixpunktsatz Banach: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:26 Mo 09.07.2012
Autor: kullinarisch


> > Sei [mm]f:\IC\to\IC,[/mm] f(z)=z²+i/4. Finde eine Kreisscheibe, auf
> > der f kontrahierend ist. Sei [mm]z_1=0[/mm] und [mm]z_{n+1}=f(z_n).[/mm]
> > Untersuche, ob die Folge [mm](z_n)[/mm] konvergiert, und bestimme
> > gegebenenfalls den Grenzwert.
>  >  Hallo zusammen. Nach dem Fixpunktsatz von Banach
> > konvergiert die Folge [mm](z_n)[/mm] ja genau dann gegen den
> > Fixpunkt von f, wenn f eine Kontraktion (auf..) ist. So wie
> > ich das verstehe, muss man sich hier selber einen
> > Definitionsbereich D basteln, s.d. f: [mm]D\to[/mm] D eine
> > Kontraktion ist.
>
> Dabei sollt D abgeschlossen sein !
>  
>
> > Wie soll man denn hier vorgehen? Soll man
> > sich einen beliebigen Punk [mm]z_0 \in\IC[/mm] aussuchen und dann
> > schauen, welchen Radius r man benötigt, damit f auf
> > [mm]B_r(z_0)=\{z \in\IC :|z-z_0|
>  
>
> Oben ist doch vom [mm]z_1=0[/mm] die Rede. Daher würde ich für D
> eine abgeschlossene Kreisscheibe um 0 mit Radius r nehmen.

Aaah. Guter Anhaltspunkt!  

> Wie kommt man zu r ?

>  
> So:
>  
> Für z,w [mm]\in[/mm] D ist
>  
> [mm]|f(z)-f(w)|=|z^2-w^2|=|z+w|*|z-w| \le (|z|+|w|)*|z-w| \le 2r|z-w|[/mm].
>  
> Machts klick ?

Ich denke schon. Man könnte r:=1/4 wählen oder zumindest r<1/2.
Danke!

> FRED
>  >  
> > Mit [mm]B_r(z_0)=\{z \in\IC :|z-z_0|
> > den Punkt [mm]z_0[/mm] mit Radius r.
> >
> > Ich bin hier leicht überfordert. Sonst war der
> > Definitionsbereich nämlich immer vorgegeben und die Zahlen
> > reell...
>  >  
> > Grüße, kulli
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]