www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Fixpunktproblem
Fixpunktproblem < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fixpunktproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:59 So 26.04.2009
Autor: georgb

Aufgabe
Sei f(x) [mm] =2x+1-\bruch{6}{x} [/mm]
a) Stellen sie das Fixpunktproblem für f(x) auf.
b) Berechnen sie alle Fixpunkte exakt.
c)Formulieren  sie das Fixpunkt- in das äquivalente Nullstellenproblem um und lösen Sie  auch dieses exakt!
d) Wie sieht die zu diesem  äquivalenten Nullstellenproblem gehörige  rekursive Definition der Newton-Rapheon-Iteration zur Nullstellenbestimmung aus?
Lösen Sie dabei, wenn vorhanden, alle Doppelbrüche auf!

Ich hoffe ihr konnt mir helfen. Solch ein Bsp taucht immer wieder bei einer Prüfung auf.

Punkt a) konnte ich noch lösen. Einfach f(x)*x rechnen, ergibt das Fixpunktproblem: 2x²+x-6=x²

Bei Punkt b hab ich aber schon meine Probleme. ich hab einfach das Ergebnis von a) Null gesetzt und x1 und x2 ausgerechnet 2x²+x-6=0. Das ist aber falsch, wieso?

c) Soweit ich weiss, einfach von b) -x rechnen und lösen 2x²-6=0, richtig?

Danke für Hilfe!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Fixpunktproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 20:39 So 26.04.2009
Autor: Gonozal_IX

Hallo georg,

> Punkt a) konnte ich noch lösen. Einfach f(x)*x rechnen,
> ergibt das Fixpunktproblem: 2x²+x-6=x²

Hm, also formell gesehen ist das nicht das Fixpunktproblem. Ein Fixpunkt liegt vor, wenn was gilt? Diese Gleichung ist dann formell dein Fixpunktproblem. Das du mit x multiplizierst, ist schon ein Lösungsschritt. (Warum kannst du den überhaupt machen?)
Also schreib doch einfach mal auf, was es heisst, wenn x ein Fixpunkt ist.

> Bei Punkt b hab ich aber schon meine Probleme. ich hab
> einfach das Ergebnis von a) Null gesetzt und x1 und x2
> ausgerechnet 2x²+x-6=0. Das ist aber falsch, wieso?

Weil für einen Fixpunkt ja nicht gilt (was du oben selbst hingeschrieben hast) [mm]2x^2 + x - 6 = 0[/mm] sondern [mm]2x^2 + x - 6 = x^2[/mm].
Diese Gleichung musst du natürlich exakt lösen.


> c) Soweit ich weiss, einfach von b) -x rechnen und lösen
> 2x²-6=0, richtig?

Nein, auch hier gilt: Schreibe dir erstmal auf, was es heisst, wenn ein Fixpunkt vorliegt und forme es DANN um, so dass auf einer Seite Null steht.

MfG,
Gono.

Bezug
                
Bezug
Fixpunktproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:52 Mo 27.04.2009
Autor: georgb

Hi Gono,

Denke, dass hat mir weitergeholfen.

Ein Fixpunkt liegt vor, wenn der Punkt x folgendes erfüllt f(x)=x

Habe aber für die Teilaufgabe a) aber alle Punkte bekommen.

Wenn ich jetzt vom Fixpunktproblem 2x²+x-6=x² ausgehe, bekomme ich bei Punkt b) folgende Fixpunkte [mm] x_{1}=2, x_{2}=-3, [/mm] korrekt? (Lösen von x²+x-6=0)

Punkt c) in meinen Unterlagen steht folgendes: Fixpunktproblem in das äquivalente Nullstellenproblem zu überführen: f(x)-x=0
d.h. x²+x-6-x=0 => [mm] x_{1}=6, x_{2}=-6, [/mm] korrekt?

Vielen Dank!



Bezug
                        
Bezug
Fixpunktproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 12:58 Mo 27.04.2009
Autor: M.Rex

Hallo

> Hi Gono,
>  
> Denke, dass hat mir weitergeholfen.
>  
> Ein Fixpunkt liegt vor, wenn der Punkt x folgendes erfüllt
> f(x)=x
>  
> Habe aber für die Teilaufgabe a) aber alle Punkte
> bekommen.
>  
> Wenn ich jetzt vom Fixpunktproblem 2x²+x-6=x² ausgehe,
> bekomme ich bei Punkt b) folgende Fixpunkte [mm]x_{1}=2, x_{2}=-3,[/mm]
> korrekt? (Lösen von x²+x-6=0)

[daumenhoch]

>  
> Punkt c) in meinen Unterlagen steht folgendes:
> Fixpunktproblem in das äquivalente Nullstellenproblem zu
> überführen: f(x)-x=0
>  d.h. x²+x-6-x=0 => [mm]x_{1}=6, x_{2}=-6,[/mm] korrekt?

>  

Hier hast du ein paar Dreher drin

f(x)-x=0
[mm] \Rightarrow 2x+1-\bruch{6}{x}-x=0 [/mm]
[mm] \gdw x+1-\bruch{6}{x}=0 [/mm]
[mm] \gdw x^{2}+x-6=0 [/mm]

An den Fixpunkten ändert sich ja nichts, wenn man das äquivalente Nullstellenproblem anwendet.


Marius

Bezug
                                
Bezug
Fixpunktproblem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:50 Di 28.04.2009
Autor: georgb

danke!
ihr seit mir eine große Hilfe!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]