www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Fixpunktproblem
Fixpunktproblem < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fixpunktproblem: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:54 Mo 19.06.2006
Autor: CampDavid

Aufgabe
Sei  , und für  V definiere
||x||:=  { | xi | : i=1,...,n } .
(a) Zeigen Sie, dass (V,  damit ein Banachraum (=vollständiger normierter Vektorraum) wird.
(b) Sei b  V ein Vektor und A  eine Matrix, welche für jedes i=1,...,n die Bedingung
| xi | < 1 erfüllt. Zeigen Sie, dass die Gleichung ( A - E )x = b eine eindeutige Lösung  V besitzt, wobei  die Einheitsmatrix ist.

Hallo ich habe mal eine Frage zu b)

Ich habe mir dazu folgendes überlegt:

(A-E)x ist wenn (A-E)x=0 die triviale Lösung ist!
Demnach kann man die Eindeutigkeit der Lösung doch als Fixpunktproblöem schreiben und zwar:
Ax=x

ich wollte fragen ob die Überlegung soweit richtig ist?
Denn dann müsste ich ja nur zeigen das A kontrahierend ist also
||Ax-Ay||  [mm] \le [/mm] ||x-y||  mit 0<r<1

Da liegt mein Problem wie man das zeigt denn es geht ja nicht einfach A rauszuziehen weil es doch den Term verändert also
|aij| ||x-y||  [mm] \le [/mm] r||x-y|| geht nicht oder?


Bin für jeden Tipp dankbar!


mfg


Ich habe diese Frage auf keiner weiteren Internetseite gestellt!

        
Bezug
Fixpunktproblem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:16 Mo 19.06.2006
Autor: Leopold_Gast

Kann es sein, daß du an entscheidender Stelle ein Summenzeichen vergessen hast. So stand es jedenfalls in dieser Aufgabe.

Bezug
                
Bezug
Fixpunktproblem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:46 Mo 19.06.2006
Autor: CampDavid

Oh ja selbstverständlich muss es heißen:
[mm] \summe_{j=1}^{n} [/mm] |aij| < 1 für alle i=1,...,n

Bezug
        
Bezug
Fixpunktproblem: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Mi 21.06.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]