www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Fixpunktiteration
Fixpunktiteration < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fixpunktiteration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:22 Do 22.12.2011
Autor: bandchef

Aufgabe
Dividieren ohne Division. Dividieren sie diesen Bruch ohne Division sondern mit Fixpunktiteration:

[mm] $\frac{1}{a}$ [/mm]

Hi Leute!

Die oben gestellte Aufgabe hab ich nur teilweise verstanden. Soweit bin ich gekommen:

[mm] $x=\frac{1}{a}$ [/mm] soll man anscheinend mit $ax$ multiplizieren. Erste Frage: Warum gerade mit ax? Das sieht dann so aus: $x = [mm] ax^2 [/mm] = g(x)$


Nun muss man anscheinend noch Ableiten: $x = 2ax = [mm] g_1'(x)$. [/mm] Das nehm ich einfach jetzt mal so hin; das gehört ja wohl zum Algorithmus.


Des Weiteren folgt dann, dass im Fixpunkt [mm] $x=\frac{1}{a}$ [/mm] gilt: [mm] $\left| g_1' \left( \frac{1}{a} \right) \right| [/mm] = 2$. Zweite Frage: Warum macht man das nun? Was sagt mir das dann?


Nun steht hier auch noch, dass man die Fixpunktgleich weiter zu $2x = [mm] ax^2+x$ [/mm] umformen soll. Dritte Frage: Wie kommt man da drauf und vor allem wozu?


Könnt ihr mir helfen? Danke!



        
Bezug
Fixpunktiteration: Antwort
Status: (Antwort) fertig Status 
Datum: 19:23 Do 22.12.2011
Autor: MathePower

Hallo bandchef,

> Dividieren ohne Division. Dividieren sie diesen Bruch ohne
> Division sondern mit Fixpunktiteration:
>  
> [mm]\frac{1}{a}[/mm]
>  Hi Leute!
>  
> Die oben gestellte Aufgabe hab ich nur teilweise
> verstanden. Soweit bin ich gekommen:
>
> [mm]x=\frac{1}{a}[/mm] soll man anscheinend mit [mm]ax[/mm] multiplizieren.
> Erste Frage: Warum gerade mit ax? Das sieht dann so aus: [mm]x = ax^2 = g(x)[/mm]
>  


Damit eine Gleichung der Form [mm]x=g\left(x\right)[/mm] erreicht wird.


>
> Nun muss man anscheinend noch Ableiten: [mm]x = 2ax = g_1'(x)[/mm].
> Das nehm ich einfach jetzt mal so hin; das gehört ja wohl
> zum Algorithmus.
>  
>
> Des Weiteren folgt dann, dass im Fixpunkt [mm]x=\frac{1}{a}[/mm]
> gilt: [mm]\left| g_1' \left( \frac{1}{a} \right) \right| = 2[/mm].
> Zweite Frage: Warum macht man das nun? Was sagt mir das
> dann?
>  


Um zu prüfen, ob das so ermittelte Verfahren konvergiert.

Da die Ableitung im Fixpunkt nicht verschwindet konvergiert
das Verfahren auch nicht.


>
> Nun steht hier auch noch, dass man die Fixpunktgleich
> weiter zu [mm]2x = ax^2+x[/mm] umformen soll. Dritte Frage: Wie
> kommt man da drauf und vor allem wozu?
>  


Gesucht ist eine Funktion, deren Ableitung im Fixpunkt verschwindet.
Dann konvergiert das Verfahren mit der so ermittelten Funktion.


>
> Könnt ihr mir helfen? Danke!
>  


Gruss
MathePower

Bezug
                
Bezug
Fixpunktiteration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:51 Do 22.12.2011
Autor: bandchef

Zitat: "Gesucht ist eine Funktion, deren Ableitung im Fixpunkt verschwindet.
Dann konvergiert das Verfahren mit der so ermittelten Funktion."

Könntest du darauf vielleicht noch etwas genauer eingehen? Kann mir nämlich da grad gar nix drunter vorstellen und weiß somit noch immer nicht wie es zu diesem Ausdruck hier kommt: $ 2x = [mm] ax^2+x [/mm] $.

Alle übrigen Fragen hast du sehr gut erklärt. Danke!

Bezug
                        
Bezug
Fixpunktiteration: Antwort
Status: (Antwort) fertig Status 
Datum: 21:43 Do 22.12.2011
Autor: MathePower

Hallo bandchef,

> Zitat: "Gesucht ist eine Funktion, deren Ableitung im
> Fixpunkt verschwindet.
>  Dann konvergiert das Verfahren mit der so ermittelten
> Funktion."
>  
> Könntest du darauf vielleicht noch etwas genauer eingehen?
> Kann mir nämlich da grad gar nix drunter vorstellen und
> weiß somit noch immer nicht wie es zu diesem Ausdruck hier
> kommt: [mm]2x = ax^2+x [/mm].
>  


Addiere auf beiden Seiten der Gleichung

[mm]a*x^{2}=x[/mm]

"x".


> Alle übrigen Fragen hast du sehr gut erklärt. Danke!


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]