www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Nichtlineare Gleichungen" - Fixpunktgleichung
Fixpunktgleichung < Nichtlineare Gleich. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Nichtlineare Gleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fixpunktgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:54 Mi 15.11.2006
Autor: Riley

Aufgabe
Zeigen Sie, dass die Fixpunktgleichung in D genau einen Startwert [mm] x^{(0)} [/mm] besitzt und dass die zugehörige Picard-Iteration für jeden beliebigen Startwert [mm] x^{(0)} [/mm] aus D gegen diesen Fixpunkt konvergiert.
[mm] f_1(x)=x_1*x_2 [/mm]
[mm] f_2(x)=1/2 ((sinx_1)^2 [/mm] + [mm] sinx_2) [/mm]
[mm] D:=\{x=(x_1,x_2)^T:|x_1|\le\frac{1}{4}, |x_2|\le\frac{1}{4}\} [/mm]

Hallo!
ist für mich die erste aufgabe zu diesem thema, deshalb ein paar fragen...
Ich muss hier den Banachfixpunktsatz anwenden, oder?
Um 1. die Kontraktionseigenschaft zu zeigen, hab ich die Jacobimatrix gebildet: J = [mm] \pmat{x_2& x_1\\sin(x_1)*cos(x_1) &1/2cos(x_2)} [/mm] und dann eine Matrixnorm gesucht mit [mm] \||J\|| [/mm] < 1. Habs mal mit der Unendlichnorm versucht:
[mm] \||J_f(x)|| [/mm] = max [mm] \{|x_1|+|x_2|; |sin(x_1)*cos(x_1)|+|1/2cos(x_2)\} [/mm]
hab  für die [mm] x_i [/mm] (i=1,2) 1/4 eingesetzt aus dem Defbereich.
es gilt ja |sin(x)|<|x| - wobei ich mit diesen abschätzungen nicht ganz sicher bin:
hab einmal 1/4*1/4+1/2*1/4=3/16 < 1/4+1/4 =1/2<1. Dürfte ich dann 1/2 als Lipschitzkonstante wählen?
und dann muss ich ja noch das mit der selbstabbildung zeigen, d.h. dass
f(x) [mm] \in [/mm] D für alle [mm] x\in [/mm] D:
[mm] f_1(1/4)=1/16 [/mm] < 1/4
[mm] f_2(1/4) [/mm] = 0.002191... < 1/4.
wäre es damit gezeigt?
und für die aufgabe muss ich da auch noch herausfinden was der fixpunkt ist, oder langt es diese beiden eigenschaften zu zeigen?
viele grüße
riley

        
Bezug
Fixpunktgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:58 Fr 17.11.2006
Autor: mathemaduenn

Hallo Riley,

> Hallo!
>  ist für mich die erste aufgabe zu diesem thema, deshalb
> ein paar fragen...
>  Ich muss hier den Banachfixpunktsatz anwenden, oder?
>  Um 1. die Kontraktionseigenschaft zu zeigen, hab ich die
> Jacobimatrix gebildet: J = [mm]\pmat{x_2& x_1\\sin(x_1)*cos(x_1) &1/2cos(x_2)}[/mm]
> und dann eine Matrixnorm gesucht mit [mm]\||J\||[/mm] < 1. Habs mal
> mit der Unendlichnorm versucht:
>  [mm]\||J_f(x)||[/mm] = max [mm]\{|x_1|+|x_2|; |sin(x_1)*cos(x_1)|+|1/2cos(x_2)\}[/mm]
>  
> hab  für die [mm]x_i[/mm] (i=1,2) 1/4 eingesetzt aus dem
> Defbereich.
>  es gilt ja |sin(x)|<|x| - wobei ich mit diesen
> abschätzungen nicht ganz sicher bin:
>  hab einmal 1/4*1/4+1/2*1/4=3/16 < 1/4+1/4 =1/2<1. Dürfte
> ich dann 1/2 als Lipschitzkonstante wählen?

Mit der Zur Maximum Norm gehörenden Zeilensummennorm würde ich das jetzt mal anzweifeln. Es sei denn []Google taugt nicht zum Rechnen.

>  und dann muss ich ja noch das mit der selbstabbildung
> zeigen, d.h. dass
>  f(x) [mm]\in[/mm] D für alle [mm]x\in[/mm] D:
>  [mm]f_1(1/4)=1/16[/mm] < 1/4
>  [mm]f_2(1/4)[/mm] = 0.002191... < 1/4.
>  wäre es damit gezeigt?
>  und für die aufgabe muss ich da auch noch herausfinden was
> der fixpunkt ist, oder langt es diese beiden eigenschaften
> zu zeigen?

Mit der Selbstabbildung würde ich versuchen über die Norm der Ableitung zu gehen da F(0)=0 ist klappt wohl folgendes
[mm] \|F(x)-F(0)\|_{\infty}\le\|J\|_{\infty}*\|x-0\|_{\infty} [/mm]
So einen "Mittelwertsatz gibt ja auch im mehrdimensionalen.
viele Grüße
mathemaduenn

Bezug
                
Bezug
Fixpunktgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:09 Sa 18.11.2006
Autor: Riley

Hi Mathemaduenn,
danke für deine hinweise. wusste gar nicht was google alles kann =)
Nur versteh ich das noch nicht ganz. warum kann ich das hier
[mm] \|F(x)-F(0)\|_{\infty}\le\|J\|_{\infty}\cdot{}\|x-0\|_{\infty} [/mm] für die selbstabbildung verwenden?
das sieht für mich eher aus wie die kontraktionseigenschaft?
und an dieser norm [mm] \|J\|_{\infty} [/mm] häng ich noch, wie ich sie richtig berechnen kann ?
wir hatten diesen satz zur kontraktionseigenschaft, dass für eine induz.Matrixnorm gilt L:= sup [mm] \{\|J_F\|: x\in D \}, [/mm] dann gilt [mm] \|F(x)-F(y)\| \leq [/mm] L [mm] \|x-y\| [/mm] für alle x,y [mm] \in [/mm] D. aber dazu müsste ich ads L ja kleiner 1 bekommen... oder ist der wert den du bei google berechnet hast das maximum, dann könnte man ungefähr L=0.7 nehmen?

viele grüße
riley



Bezug
                        
Bezug
Fixpunktgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:40 Sa 18.11.2006
Autor: mathemaduenn

Hallo Riley,
> [mm]\|F(x)-F(0)\|_{\infty}\le\|J\|_{\infty}\cdot{}\|x-0\|_{\infty}[/mm]
> für die selbstabbildung verwenden?
>  das sieht für mich eher aus wie die
> kontraktionseigenschaft?

JA soll auch so aussehen ;-)
Deine Menge sieht ja so aus [mm]\{x \in \mathbb{R}^2 :\|x\|_{infty}\le\frac{1}{4} \}[/mm]
Nun gilt aber
[mm]\|F(x)\|=\|F(x)-F(0)\|_{\infty}\le\underbrace{\|J\|_{\infty}}_{<1}\cdot{}\underbrace{\|x-0\|_{\infty}}_{\le \frac{1}{4}}\le\frac{1}{4}[/mm]
Mit anderen Worten wenn Betrag J kleiner 1 liegt F(x) in deiner Menge.

>  und an dieser norm [mm]\|J\|_{\infty}[/mm] häng ich noch, wie ich
> sie richtig berechnen kann ?
> wir hatten diesen satz zur kontraktionseigenschaft, dass
> für eine induz.Matrixnorm gilt L:= sup [mm]\{\|J_F\|: x\in D \},[/mm]
> dann gilt [mm]\|F(x)-F(y)\| \leq[/mm] L [mm]\|x-y\|[/mm] für alle x,y [mm]\in[/mm] D.
> aber dazu müsste ich ads L ja kleiner 1 bekommen... oder
> ist der wert den du bei google berechnet hast das maximum,
> dann könnte man ungefähr L=0.7 nehmen?

Das überblicke ich gerade nicht hast Du Dir die Funktion [mm]|sin(x_1)\cdot{}cos(x_1)| + \left|\frac{1}{2\cos(x_2)}\right|[/mm] Also die Zeilensumme der Matrix für die 2.Zeile mal zeichnen lassen(im entsprechenden Bereich), um zu sehen ob das der richtige Ansatz ist?
viele Grüße
mathemaduenn

Bezug
                                
Bezug
Fixpunktgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:48 Sa 18.11.2006
Autor: Riley

Hi Mathemaduenn,

oh die abschätzung gefällt mir, jetzt versteh ich das =) bleibt nur zu zeigen dass wirklich [mm] \|J_F\|_{\infty} \leq [/mm] 1 ist...
hmm, neh, meinst du [mm] |sin(x_1) cos(x_1)| [/mm] + | [mm] \frac{1}{2} cos(x_2)| [/mm] mit matlab plotten? weiß leider nicht so genau wie die befehle dafür sind... ich mein ich hab beide summanden einzeln mal mit funkyplot angeschaut, aber das hilft wohl nicht so viel, oder...?

viele grüße
riley

Bezug
                                        
Bezug
Fixpunktgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:04 Sa 18.11.2006
Autor: mathemaduenn

Hallo Riley,
> oh die abschätzung gefällt mir, jetzt versteh ich das =)
> bleibt nur zu zeigen dass wirklich [mm]\|J_F\|_{\infty} \leq[/mm] 1
> ist...
>  hmm, neh, meinst du [mm]|sin(x_1) cos(x_1)|[/mm] + | [mm]\frac{1}{2} cos(x_2)|[/mm]
> mit matlab plotten? weiß leider nicht so genau wie die
> befehle dafür sind... ich mein ich hab beide summanden
> einzeln mal mit funkyplot angeschaut, aber das hilft wohl
> nicht so viel, oder...?

Doch das reicht völlig.
Es sollte sich ergeben haben das [mm] cos(x_1)*sin(x_1) [/mm] im betrachteten Bereich recht klein bleibt. Es scheint also der richtige Weg zu sein. Jetzt mußt Du abschätzen. -> Wie groß kann der Betrag des cos sein?
viele Grüße
mathemaduenn

Bezug
                                                
Bezug
Fixpunktgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:26 Sa 18.11.2006
Autor: Riley

Hi Mathemaduenn,

ja, schon... es gilt ja |sin(x)| [mm] \leq [/mm] |x | . gilt das auch für cos?oder langt es zu sagen cos bleibt kleiner 1, also der betrag | 1/2 * cos(x)| [mm] \leq [/mm] 1/2 ? oder mit was würdest Du es abschätzen?

Viele grüße
riley

Bezug
                                                        
Bezug
Fixpunktgleichung: nicht so unsicher ;-)
Status: (Antwort) fertig Status 
Datum: 18:37 Sa 18.11.2006
Autor: mathemaduenn

Hallo Riley,
Trau Dich!

> Hi Mathemaduenn,
>  
> ja, schon... es gilt ja |sin(x)| [mm]\leq[/mm] |x | . gilt das auch
> für cos?oder langt es zu sagen cos bleibt kleiner 1, also
> der betrag | 1/2 * cos(x)| [mm]\leq[/mm] 1/2 ? oder mit was würdest
> Du es abschätzen?

[daumenhoch]
viele Grüße
mathemaduenn

Bezug
                                                                
Bezug
Fixpunktgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:06 Sa 18.11.2006
Autor: Riley

Hi Mathemaduenn,

... okay, dann schätz ich das so ab:
[mm] |sin(x_1)*cos(x_1)| [/mm] + |1/2 * [mm] cos(x_2)| \leq [/mm] 1/4 + 1/2 = 3/4

d.h. [mm] \|J_F\|_{\infty} [/mm] = 3/4, damit ist die Eigenschaft der Selbstabbildung gezeigt und außerdem kann ich dann auch L=3/4 wählen für die Kontraktion.

und den Fixpunkt selbst muss ich bei dieser Aufgabe nicht bestimmen, oder?
viele grüße
riley

Bezug
                                                                        
Bezug
Fixpunktgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:50 Sa 18.11.2006
Autor: mathemaduenn

Hallo Riley,
> Hi Mathemaduenn,
>  
> ... okay, dann schätz ich das so ab:
>  [mm]|sin(x_1)*cos(x_1)|[/mm] + |1/2 * [mm]cos(x_2)| \leq[/mm] 1/4 + 1/2 =
> 3/4

> d.h. [mm]\|J_F\|_{\infty}[/mm] = 3/4, damit ist die Eigenschaft der
> Selbstabbildung gezeigt und außerdem kann ich dann auch
> L=3/4 wählen für die Kontraktion.

[daumenhoch]

> und den Fixpunkt selbst muss ich bei dieser Aufgabe nicht
> bestimmen, oder?

Steht nicht da wäre aber nicht schwer. Genaugenommen hatten wir den doch schon irgendwo [grins]
viele Grüße
mathemaduenn

Bezug
                                                                                
Bezug
Fixpunktgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:34 Sa 18.11.2006
Autor: Riley

Hi Mathemaduenn,

stimmt, der nullvektor =)

vielen dank für deine hilfe !

gruß riley

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Nichtlineare Gleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]