www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - Fixpunkte
Fixpunkte < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fixpunkte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:00 Do 22.12.2011
Autor: perl

Aufgabe
Für die Zufallsv. [mm] X_{n} [/mm] die die Anzahl der Fixp. einer rein zufälligen Permutation von 1,2,...,n beschreibt, wird nach folgender formel berechnet:
[mm] P({X_{n} = k}) [/mm] = [mm] \bruch{1}{k!} \summe_{r=0}^{n - k} \bruch{(-1)^r}{r!} [/mm] für k = 0,...,n

Warum ist [mm] P({X_{7}=6}) [/mm] = 0 ? Begründe ohne Formel und begründe weiter, Für welche k [mm] P({X_{n}=k}) [/mm] = 0 gilt.


also die W hab ich bis für 0<=k<=7 berechnet:

> 1/2 - 1/6 + 1/24 - 1/120 + 1/720 - 1/5040

[1] 0.3678571

> 1/2*( 1/2 - 1/6 + 1/24 - 1/120)

[1] 0.1833333

> 1/2 - 1/6 + 1/24 - 1/120 + 1/720

[1] 0.3680556

> 1/6*( 1/2 - 1/6 + 1/24)

[1] 0.0625

> 1/24*( 1/2 - 1/6)

[1] 0.01388889

> 1/120*( 1/2)

[1] 0.004166667

> 1/5040

[1] 0.0001984127


Wie kann ich nun sagen für welche k eben =0 gilt? Es geht um Permutationen von den Zahlen 1,...,n und [mm] X_{n} [/mm] gibt die Anzahl der Fixpunkte an...
Frage ist also: Warum ist die  W. für 6 Fixpunkte bei 7 Elementen gleich 0?

Hab ich das richtig aufgefasst??
Dann wäre meine Antwort:
Weil 6 Fixp. impliziert, dass das 7. Element eben keiner ist und es ergibt sich ein widerspruch da dies nicht möglich ist.
--> [mm] P({X_{n}=k}) [/mm] = 0 g.d.w. k=n-1

Bsp.:

mod7

01234567
0123456!!
man sieht dass das 7. Element nirgendwo hin abgebildet werden kann wenn 6 Elemente fix bleiben.


Oder lieg ich jetzt komplett daneben???

Danke an alle Nachteulen :)

        
Bezug
Fixpunkte: Antwort
Status: (Antwort) fertig Status 
Datum: 00:23 Do 22.12.2011
Autor: donquijote


> Für die Zufallsv. [mm]X_{n}[/mm] die die Anzahl der Fixp. einer
> rein zufälligen Permutation von 1,2,...,n beschreibt, wird
> nach folgender formel berechnet:
>  [mm]P({X_{n} = k})[/mm] = [mm]\bruch{1}{k!} \summe_{r=0}^{n - k} \bruch{(-1)^r}{r!}[/mm]
> für k = 0,...,n
>  
> Warum ist [mm]P({X_{7}=6})[/mm] = 0 ? Begründe ohne Formel und
> begründe weiter, Für welche k [mm]P({X_{n}=k})[/mm] = 0 gilt.
>  
> also die W hab ich bis für 0<=k<=7 berechnet:
>  > 1/2 - 1/6 + 1/24 - 1/120 + 1/720 - 1/5040

>  [1] 0.3678571
>  > 1/2*( 1/2 - 1/6 + 1/24 - 1/120)

>  [1] 0.1833333
>  > 1/2 - 1/6 + 1/24 - 1/120 + 1/720

> [1] 0.3680556
>  > 1/6*( 1/2 - 1/6 + 1/24)

>  [1] 0.0625
>  > 1/24*( 1/2 - 1/6)

>  [1] 0.01388889
>  > 1/120*( 1/2)

>  [1] 0.004166667
>  > 1/5040

>  [1] 0.0001984127
>  
>
> Wie kann ich nun sagen für welche k eben =0 gilt? Es geht
> um Permutationen von den Zahlen 1,...,n und [mm]X_{n}[/mm] gibt die
> Anzahl der Fixpunkte an...
> Frage ist also: Warum ist die  W. für 6 Fixpunkte bei 7
> Elementen gleich 0?
>  
> Hab ich das richtig aufgefasst??
>  Dann wäre meine Antwort:
> Weil 6 Fixp. impliziert, dass das 7. Element eben keiner
> ist und es ergibt sich ein widerspruch da dies nicht
> möglich ist.
>  --> [mm]P({X_{n}=k})[/mm] = 0 g.d.w. k=n-1

richtig gedacht, kann man aber noch etwas geschickter formulieren.
Wenn es 6 Fixpunkte gibt, bleibt für das 7. Element keine andere Möglichkeit mehr als auf sich selbst abgebildet zu werden.

>  
> Bsp.:
>  
> mod7
>  
> 01234567
>  0123456!!
>  man sieht dass das 7. Element nirgendwo hin abgebildet
> werden kann wenn 6 Elemente fix bleiben.
>  
>
> Oder lieg ich jetzt komplett daneben???

Nein, das ist der richtige Ansatz, siehe oben.

>  
> Danke an alle Nachteulen :)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]