www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Fixpunkte
Fixpunkte < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fixpunkte: Tipp, Idee
Status: (Frage) beantwortet Status 
Datum: 16:04 Mi 08.07.2009
Autor: Peano08

Aufgabe
Ist f: [-1,1] -> [-1,1] stetig, so hat f mindestens einen Fixpunkt, d.h. es existiert eine Zahl t* mit f(t*)=t*.

Hinweis: Benutzen Sie den Zwischenwertsatz von Darboux.  

Hallo, ich weiß leider nicht, wie ich anfangen soll. Soll f eine identische Abb. sein, oder kann ich dass so nicht annehmen?

Danke und Grüße,
Ben



Sooo, ich hab mich mal etwas bemüht:

Aus f([-1,1]) teilmenge von [-1,1] folgt:

f(-1)>=-1 und f(1)<=1

=> F(-1)=f(-1)+1 >=0 und F(1)=f(1)-1<=0

Nach dem Zwischenwertsatz von Darboux gibt es ein t in [-1,1], sodass F(t)=0
=> f(t*)=t*

Ist das so richtig?

        
Bezug
Fixpunkte: warum Darboux ?
Status: (Antwort) fertig Status 
Datum: 16:44 Mi 08.07.2009
Autor: Al-Chwarizmi


> Ist f: [-1,1] -> [-1,1] stetig, so hat f mindestens einen
> Fixpunkt, d.h. es existiert eine Zahl t* mit f(t*)=t*.
>
> Hinweis: Benutzen Sie den Zwischenwertsatz von Darboux.
> Hallo, ich weiß leider nicht, wie ich anfangen soll. Soll
> f eine identische Abb. sein, oder kann ich das so nicht
> annehmen?
>  
> Danke und Grüße,
> Ben

Hallo Ben,

ich hab mir kurz den Satz von Darboux vorgeknöpft:

  Satz von Darboux, Zwischenwertsatz für Ableitungen:

  Sei f auf [a; b] differenzierbar und sei [mm] \blue{f'(a)\not=f'(b)} [/mm] .
  Dann nimmt f'(x) in (a; b) jeden Wert zwischen
  f'(a) und f'(b) an.



In deiner Aufgabe ist allerdings für die Funktion f
keine Differenzierbarkeit, sondern nur Stetigkeit
vorausgesetzt. Das heisst wohl, dass man den
Satz von Darboux (wenn denn wirklich dieser
Zwischenwertsatz angewendet werden soll !) nicht
für f, sondern für eine Stammfunktion F von f
anwenden soll.

Ich meine allerdings, dass der stinknormale
Zwischenwertsatz
(ohne Darboux) den Dienst
auch tut, wenn man die Funktion g(x):=f(x)-x
und die Gleichung  g(x)=0  betrachtet.


LG    Al-Chwarizmi



Bezug
        
Bezug
Fixpunkte: Antwort
Status: (Antwort) fertig Status 
Datum: 17:40 Mi 08.07.2009
Autor: fred97

Tipp:

betrachte g(t) = f(t) -t und berechne das Vorzeichen von g(1) und g(-1).

FRED

Bezug
                
Bezug
Fixpunkte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:07 Mi 08.07.2009
Autor: Peano08

hi,
also ich hab da meine Probleme mit der Abbildung. Ich weiß doch gar nicht, wie die abbildet, eben nur von [-1,1]->[-1,1].

Wenn ich nun g(1)=f(1)-1 und g(-1)=f(-1)+1 betrachte..... Ehrlich gesagt sehe ich da nicht viel..

sry.

Bezug
                        
Bezug
Fixpunkte: Antwort
Status: (Antwort) fertig Status 
Datum: 19:18 Mi 08.07.2009
Autor: Al-Chwarizmi


> hi,
> also ich hab da meine Probleme mit der Abbildung. Ich weiß
> doch gar nicht, wie die abbildet, eben nur von
> [-1,1]->[-1,1].
>
> Wenn ich nun g(1)=f(1)-1 und g(-1)=f(-1)+1 betrachte.....
> Ehrlich gesagt sehe ich da nicht viel..


Da f(-1) zwischen -1 und +1 liegt, liegt g(-1)=f(-1)-1
zwischen -2 und 0, es gilt also [mm] g(-1)\le{0}. [/mm] Analog kann
man schließen, dass [mm] g(1)\ge{0} [/mm] sein muss.
Nach dem (gewöhnlichen) Zwischenwertsatz
kann man dann schließen, dass es wenigstens
ein t [mm] \in [/mm] [-1;1] geben muss mit g(t)=0.


LG    Al-Chwarizmi    

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]