www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Fixpunkt bestimmen
Fixpunkt bestimmen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fixpunkt bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:32 Mo 07.08.2006
Autor: Sandy857

Aufgabe
Sei X=C([0,1]) der Raum der stetigen Funktionen auf [0,1] und sei die Norm auf X definiert durch
[mm] \parallel [/mm] f [mm] \parallel _{\infty}:=sup_{s\in [0,1]} [/mm] |f(s)|.Weiterhin sei A:X [mm] \to [/mm] X gegeben durch
(Af)(s)= [mm] \integral_{0}^{s}{k(t)*f(t) dt} [/mm]
mit k [mm] \in [/mm] X und [mm] 0\le [/mm] k(t) [mm] \le [/mm] 0,5 für t [mm] \in [/mm] [0,1].
Geben sie den Fixpunkt [mm] f^\* [/mm] an!

Ich habe diese Frage in keinen anderem Forum gestellt.
Ich habe bereits gezeigt,dass laut Banachschen Fixpunktsatz gilt:
[mm] \exists! f^\*:Af^\*=f^\* [/mm]
Doch wie gebe ich jetzt konkret den Fixpunkt an?
Wäre für eure Hilfe sehr dankbar.

        
Bezug
Fixpunkt bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:08 Mo 07.08.2006
Autor: leduart

Hallo Sandy
Wenn ein r Fixpkt. g existiert, hast du ja die Gl. Ag=g !
Die musst du nur differenzieren und hast ne "einfache" Differentialgleichung für g.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]