Fixgerade und Eigenwerte < Abbildungen+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:50 So 17.09.2006 | Autor: | sara_99 |
Aufgabe | Gegeben ist die affine Abbildung a: [mm] x'=\pmat{ 1 & 5 \\ 3 & -1 } [/mm] * x
Zeigen Sie dass die Geraden g: x= r* [mm] \vektor{-1 \\ 1} [/mm] und h:x=s* [mm] \vektor{x5\\ 3} [/mm] Fixgeraden von a sind. |
Also ich hab schonmal den Fixpunkt 0 ausgerechnet, aber ich weiß nicht wie es weitergeht. Auch versteh ich die Definition von Fixgerade nicht wirklich: Wenn es eine Fixgerade gibt, gibt es automatisch auch mindesten einen Fixpunkt, richtig?
Aber aus welchen Punkten besteht die Fixgerade noch, außer einem Fixpunkt?
Dann noch zwei dringende Fragen:
1)Wie erkennt man an einer Abbildungsmatrix ob es sich um eine Drehung, Spiegelung etc handelt?
2) Was haben Eigenwerte-/vektoren für einen "Wert"? Was mach ich damit? Kann ich an der Anzahl der eigenwerte erkennen ob es sich um eine Drehung oder etwas anderes handelt?
Ich weiiß das sind ziemlich viele Fragen auf einmal, abwer ich wär echt dankbar wenn mir jemand helfen könnte.
Wenn es möglich ist bitte den ganzen Lösungsweg posten (ich werd ihn mir auch sicher angucken und nicht nur abschreiben ;) ich schreibe morgen Klausur...^^)
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:23 Mo 18.09.2006 | Autor: | ron |
Hallo,
damit es Morgen klappen kann, bitte die Bilder in der Anlage mit Bsp zu Fixgerade/Fixpunkt und Berechneung mittels Eigenwerten/-vektoren der Matrixabbildung anschauen, ggf. zoomen und ausdrucken.
Hinweis: Eigenvektor v zu Matrix A mit Eigenwert [mm] \lamda [/mm] gilt:
Av = [mm] \lambda [/mm] v
Av - [mm] \lambda [/mm] v =0
(A- [mm] \lambda [/mm] E)v = 0 (LGS) mit E ist die Einheitsmatrix gemeint.
Jetzt noch das Bsp in der Analge sollte etwas helfen auf die Schnelle.
Was ist mit Eigenwert 1!!!! Dann sind alle Eigenvektoren Fixpunkte bzw. Geraden, überlege nochmal selbst. Achte darauf nicht immer ist zu einem Eigenwert nur ein eigenvektor zu finden, können aber maximal soviele sein wie "Dimension" der Matrix.
In der Frage müssen [mm] \vektor{-1\\1} [/mm] und [mm] \vektor{5\\3} [/mm] somit Eigenvektoren der Abbildungsmatrix sein. Nach der Anlage ist der Fixpunkt dann (0,0), also richtig berechnet!
Gruß + viel Glück
Ron
Dateianhänge: Anhang Nr. 1 (Typ: JPG) [nicht öffentlich] Anhang Nr. 2 (Typ: JPG) [nicht öffentlich] Anhang Nr. 3 (Typ: JPG) [nicht öffentlich]
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:59 Mo 18.09.2006 | Autor: | sara_99 |
Cool, vielen Dank! Hat mir sehr geholfen :)
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:54 Mo 18.09.2006 | Autor: | ron |
Hallo,
schön wenn es hilft!
Drücke fest die Daumen für Morgen.
Toi, toi...
Ron
|
|
|
|