www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Finden einer Matrix
Finden einer Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Finden einer Matrix: Berechne U^(-1)*M*U
Status: (Frage) beantwortet Status 
Datum: 21:57 Mo 02.11.2009
Autor: Cassipaya

Aufgabe
  Berechnen Sie die Matrix U [mm] \in [/mm] Gl(n, [mm] \IR), [/mm] für die [mm] _{B}M_{B} [/mm] = [mm] U^{-1} (_{A}M_{A}) [/mm] U gilt.

[mm] _{B}M_{B} [/mm] = [mm] \pmat{ 1 & \bruch{1}{2} \\ -2 & 2 } [/mm]

[mm] _{A}M_{A} =\pmat{ 6 & -3 \\ 7 & -3 } [/mm]

Hallo Zusammen

Naja, mir ist klar, dass ich U und [mm] U^{-1} [/mm] finden muss. Aber wenn ich das mit

U = [mm] \pmat{ a & b \\ c & d } [/mm] und [mm] U^{-1} [/mm] =  [mm] \bruch{1}{ad-bc} [/mm] * [mm] \pmat{ d & -b \\ -c & a } [/mm] mache, dann bekomme ich vier beinahe unlösbare Gleichungen und dass kann ich fast nicht glauben.

Gibt es einen einfacheren Weg?

Danke für eure Tipps!

Liebe Grüsse

Cassiopaya

        
Bezug
Finden einer Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:35 Mo 02.11.2009
Autor: pelzig

Hast du denn konkrete Basen A und B vorgegeben?

Gruß, Robert

Bezug
        
Bezug
Finden einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 08:08 Di 03.11.2009
Autor: angela.h.b.


>  Berechnen Sie die Matrix U [mm]\in[/mm] Gl(n, [mm]\IR),[/mm] für die
> [mm]_{B}M_{B}[/mm] = [mm]U^{-1} (_{A}M_{A})[/mm] U gilt.
>  
> [mm]_{B}M_{B}[/mm] = [mm]\pmat{ 1 & \bruch{1}{2} \\ -2 & 2 }[/mm]
>  
> [mm]_{A}M_{A} =\pmat{ 6 & -3 \\ 7 & -3 }[/mm]

Hallo,

ich gehe davon aus, daß Ihr für A und B nichts gegeben habt.

Ich würde mich jetzt mal dranmachen zu berechnen, wie die Basisvektoren von A in Koordinaten bzgl B aussehen müssen.

Sei also [mm] B:=(e_1, e_2). [/mm]

Ich möchte A:=( [mm] a_1, a_2) [/mm]  mit       [mm] a_1:=a_1_1e_1+a_2_1 ,\quad a_2:=a_1_2e_1+a_2_2e_2 [/mm]  berechnen


Die beiden Matrizen teilen mit.

[mm] f(e_1)=e_1-2e_2 [/mm]
[mm] f(e_2)= [/mm] ...

[mm] f(a_1_1e_1+a_2_1)= 6*(a_1_1e_1+a_2_1)+7(a_1_2e_1+a_2_2e_2) [/mm]
[mm] f(a_1_2e_1+a_2_2e_2)= [/mm] ...

Wenn Du die Linearität von f nutzt, solltest Du ein schönes lineares GS bekommen, aus welchem Du die [mm] a_i_j [/mm] berechnen kannst.

Gruß v. Angela

Bezug
                
Bezug
Finden einer Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:54 Di 03.11.2009
Autor: Cassipaya

Doch ich hab Basen, aber ich muss ja U und [mm] U^{-1} [/mm] berechnen.

Die Basen sind

A = [mm] \{ \vektor{1 \\ 2} , \vektor{2 \\ 3} \} [/mm] und

B = [mm] \{ \vektor{1 \\ -1} , \vektor{4 \\ 2} \}. [/mm]

Aber was haben die zu tun mit U und [mm] U^{-1} [/mm] ? Das versteh ich jetzt nicht.

Liebe Grüsse und danke für eure Hilfe!

Bezug
                        
Bezug
Finden einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 09:10 Di 03.11.2009
Autor: angela.h.b.


> Doch ich hab Basen, aber ich muss ja U und [mm]U^{-1}[/mm]
> berechnen.
>  
> Die Basen sind
>  
> A = [mm]\{a_1:= \vektor{1 \\ 2} ,a_2:= \vektor{2 \\ 3} \}[/mm] und
>  
> B = [mm]\{b_1.= \vektor{1 \\ -1} , b_2:=\vektor{4 \\ 2} \}.[/mm]
>  
> Aber was haben die zu tun mit U und [mm]U^{-1}[/mm] ? Das versteh
> ich jetzt nicht.

Hallo,

U ist die Matrix, die Für Dich Vektoren, die in Koordinaten bzg. B gegeben sind, in solche bzgl A verwandelt.

Damit steht der Plan:

Schreibe [mm] b_1 [/mm] als

[mm] b_1= a*a_1+c*a_2=\vektor{a\\c}_{(A)}, [/mm] dies ist die erste Spalte der gesuchten Matrix U.

Die andere entsprechend.

(Dann wollen wir nur hoffen, daß Deine Chefs mit der Matrix [mm] _AM_A [/mm] nicht geflunkert haben, und daß alles schön paßt.)

Gruß v. Angela

P.S.:
eventuell nacharbeiten: Darstellungsmatrizen bzgl verschiedener Basen, Transformationsmatrizen.





Bezug
                                
Bezug
Finden einer Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:35 Di 03.11.2009
Autor: Cassipaya

Danke Angela!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]