www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Diskrete Mathematik" - Fibonaccizahlen
Fibonaccizahlen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fibonaccizahlen: Ahnungslosigkeit
Status: (Frage) beantwortet Status 
Datum: 23:43 Mi 16.11.2011
Autor: clemenum

Aufgabe
Man zeige die Gültigkeit folgender Fibonacci-Idendität:
[mm] $\sum_{k=0}^{n} F_kF_{n-k} [/mm] = [mm] \sum_ {k=0}^n [/mm] (k+1) [mm] \cdot F_{k+1} \cdot (-2)^{n-k} [/mm] $

Es tut mir leid, aber bei diesem Beispiel habe ich nichtmal eine Idee!

Ich bitte euch um einen guten Hinweis. Es wurde leider lediglich eingeführt, was Fibonacci-Zahlen sind (es wurde die explizite und die rekursive Bildungsvorschrift angegeben bzw. hergeleitet, sonst nichts), daher meine Ahnungslosigkeit.

Hilft hier mir eine bekannte Methode weiter oder muss ich hier eine (neue?) entwicklen und wenn ja, könntet ihr mir einen weiterführenden Hinweis geben!

Ich wäre euch jedenfalls sehr dankbar, liebe Mathematikergemeinde! :-)

        
Bezug
Fibonaccizahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:43 Do 17.11.2011
Autor: Fulla

Hallo clemenum,

> Man zeige die Gültigkeit folgender Fibonacci-Idendität:
> [mm]\sum_{k=0}^{n} F_kF_{n-k} = \sum_ {k=0}^n (k+1) \cdot F_{k+1} \cdot (-2)^{n-k}[/mm]

das schreit zwar nach vollständiger Induktion, aber die Gleichung stimmt so nicht.... (ich gehe mal davon aus, dass [mm]F_0=1[/mm], [mm]F_1=1[/mm], [mm]F_n=F_{n-1}+F_{n-2}[/mm])

Z.B. für [mm]n=1[/mm] steht da
[mm]F_0F_1+F_1F_0=F_1(-2)+2F_2\quad\Leftrightarrow[/mm]
[mm]1+1=-2+2\quad\Leftrightarrow[/mm]
[mm]2=0[/mm]

Vielleicht schreibst du mal, wie die [mm]F_i[/mm] definiert sind...


Lieben Gruß,
Fulla


Bezug
                
Bezug
Fibonaccizahlen: Info
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:58 Do 17.11.2011
Autor: clemenum

Natürlich sind mit den [mm] $F_i$ [/mm] - wie ja bereits angedeutet - die Fibonacci-Zahlen gemeint, also die Zahlen mit [mm] $F_0 [/mm] = 1, [mm] F_1 [/mm] = 1$ und [mm] $F_{n+1} [/mm] = [mm] F_{n-1} [/mm] + [mm] F_n [/mm] $ .

Findet mit dieser Information nun einer von euch einen wertvollen Hinweis zu dieser Aufgabe?


P.S.: Durch Ausprobieren kommt (mir) sehrwohl etwas richtiges heraus^^ Es ist nur eine ziemlich komplizierte Summe, wo man schon beim Einsetzen leicht Fehler macht...

Bezug
        
Bezug
Fibonaccizahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:14 Do 17.11.2011
Autor: reverend

Hallo clemenum,

ich denke wie Fulla, dass man dies am besten mit Induktion angeht.
Schaun wir mal:

> Man zeige die Gültigkeit folgender Fibonacci-Idendität:
> [mm]\sum_{k=0}^{n} F_kF_{n-k} = \sum_ {k=0}^n (k+1) \cdot F_{k+1} \cdot (-2)^{n-k}[/mm]
>  
> Es tut mir leid, aber bei diesem Beispiel habe ich nichtmal
> eine Idee!
>
> Ich bitte euch um einen guten Hinweis. Es wurde leider
> lediglich eingeführt, was Fibonacci-Zahlen sind (es wurde
> die explizite und die rekursive Bildungsvorschrift
> angegeben bzw. hergeleitet, sonst nichts), daher meine
> Ahnungslosigkeit.
>  
> Hilft hier mir eine bekannte Methode weiter oder muss ich
> hier eine (neue?) entwicklen und wenn ja, könntet ihr mir
> einen weiterführenden Hinweis geben!

Für n=0: [mm] F_0F_0=1*F_1*(-2)^0\quad\gdw\quad [/mm] 1=1 [ok]

Sicherheitshalber auch für n=1: [mm] F_0F_1+F_1F_0=1F_1*(-2)+2*F_2*(-2)^0\quad\gdw\quad 1+1=-2+2*\blue{2} [/mm] [ok]

So, nun Induktionsvoraussetzung: Formel stimmt für ein n.

Wie leitet man nun die Formel für n+1 aus der für n her?
Ich fange mal mit der rechten Seite an:

[mm] \summe_{k=0}^{n+1}(k+1)F_{k+1}*(-2)^{n+1-k}=(n+2)F_{n+2}-2\summe_{k=0}^{n}(k+1)F_{k+1}*(-2)^{n-k} [/mm]

Ok so? Hier steht jetzt erst das "höchste" Summationsglied, und alle andern sind zusammengefasst, werden allerdings in der Summe bis (n+1) im Vergleich zu der bis n mit (-2) multipliziert; die habe ich vor die Summe gezogen.

Die linke Seite wird etwas schwieriger.

[mm] \summe_{k=0}^{n+1}F_kF_{n+1-k}=F_{n+1}F_0+F_nF_1+\summe_{k=0}^{n-1}F_k(F_{n-k}+F_{n-k-1})=F_{n+2}+\left(\summe_{k=0}^{n}F_kF_{n-k}\right)-F_nF_0+\left(\summe_{k=0}^{n-1}F_kF_{n-1-k}\right)= [/mm]

[mm] =F_{n+1}+\left(\summe_{k=0}^{n}F_kF_{n-k}\right)+\left(\summe_{k=0}^{n-1}F_kF_{n-1-k}\right)=\cdots [/mm]

So. Die beiden Summen, die jetzt da stehen, sollten Dir bekannt vorkommen. So ist man jetzt auf dem besten Weg einer Rekursion, bzw. einer zweistufigen Induktion. Man muss also voraussetzen, dass die Formel für n-1 und n gilt, und dann zeigen, dass sie auch für n+1 gilt. Glücklicherweise haben wir für n=0 und n=1 ja schon überprüft, dass sie gilt, das ist also kein Hindernis.

Das nächste Stück Weiterarbeit überlasse ich Dir. Sehr weit ist es jetzt nicht mehr.

Grüße
reverend


Bezug
                
Bezug
Fibonaccizahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:34 Do 17.11.2011
Autor: Fulla

Hallo reverent und clemenum,

sorry für die Verwirrung, ich hab mich beim Einsetzen vertan.

Lieben Gruß,
Fulla


Bezug
                        
Bezug
Fibonaccizahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:42 Do 17.11.2011
Autor: reverend

Hallo Fulla,

da stehst Du doch drüber. Wem das (angeblich) nicht passiert, der sollte besser keine Mathematik treiben. Kleinkram, und vor allem: leicht korrigierbar.

Ich erspare mir gerade mal, Beispiele meiner eigenen Fehler zu suchen. Innerhalb der letzten Woche dürften es allein in diesem Forum mindestens zehn gewesen sein. Wenige davon habe ich selbst bemerkt. Das ist doch das gute an der Öffentlichkeit des Forums - durch die gegenseitige Überprüfung können wir Richtigkeit und damit auch Qualität sichern.

Herzliche Grüße
reverend


Bezug
                
Bezug
Fibonaccizahlen: Zwischenergebnis
Status: (Frage) überfällig Status 
Datum: 21:02 Di 22.11.2011
Autor: clemenum

Hallo! Ich hatte die letzten paar Tage für diese aufgabe keine Zeit, daher reagiere ich erst jetzt.

Ich habe so weitergemacht:
$... = [mm] F_{n+1} [/mm] + [mm] \sum_{k=0}^{n-1}(k+1)F_{k+1}(-2)^{n-1-k} [/mm] + [mm] \sum_{k=0}^{n}(k+1)F_{k+1}(-2)^{n-k} [/mm]  =  [mm] 2\cdot\sum_{k=0}^{n-1}(k+1)F_{k+1}(-2)^{n-1-k} +(n+2)F_{n+1} [/mm] $
Das sieht aber leider nur annähernd nach Induktionsbehauptung aus! :-(

Ich habe öfters nachgerechnet, ich scheine keinen Fehler gemacht zu haben? Habe ich etwa einen logischen Fehler gemacht?

Jedenfalls, herzlichen Dank für die bisherige Hilfe! :-)

Bezug
                        
Bezug
Fibonaccizahlen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Fr 25.11.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]