www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Fibonacci Induktion
Fibonacci Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fibonacci Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:37 So 13.02.2011
Autor: kushkush

Aufgabe
Beweise folgende Aussagen:

$a) [mm] \sum_{k=0}^{n}f_{k}=f_{n+2}-1$ [/mm]

$b) [mm] \sum_{k=0}^{n}f_{2k+1}=f_{2n+2}$ [/mm]

$c) [mm] f^{2}_{n+1}=f_{n}f_{n+2}+(-1)^{n}$ [/mm]

Hallo,


a)

Induktionsvoraussetzung: $ [mm] \sum_{k=0}^{n}f_{k}=f_{n+2}-1$ [/mm]

Induktionsanfang: mit n=1: [mm] f_{0}+1=2-1 [/mm]

Induktionsschritt [mm] n\rightarrow [/mm] n+1:

[mm] $\sum_{k=0}^{n+1}f_{k}=\sum_{k=0}^{n}f_{k}+f_{n+1}=f_{n+2}-1+f_{n+1}=f_{n+3}-1=f_{(n+1)+2}-1$ [/mm]

b)
IV: [mm] $\sum_{k=0}^{n}f_{2k+1}=f_{2n+2}$ [/mm]

IA: [mm] $n=1$:f_{1}+f_{3}=f_{4}$ [/mm]

IS [mm] $n\rightarrow [/mm] n+1$:

[mm] $\sum_{k=0}^{n+1}f_{2k+1}=\sum_{k=0}^{n}f_{2k+1}+f_{2n+3}=f_{2n+2}+f_{2n+3}=f_{2n+4}=f_{2(n+1)+2}$ [/mm]


c)
IV:  $ [mm] f^{2}_{n+1}=f_{n}f_{n+2}+(-1)^{n}$ [/mm]
IA:  $n=0$: $1=1$

IS:
[mm] $f^{2}_{(n+1)+1)}=(f_{n+1}+f_{n})^{2}=f^{2}_{n+1}+2f_{n}f_{n+1}+f^{2}_{n}=f_{n}f_{n+2}+(-1)^{n}+2f_{n}f_{n+1}+f_{n}^{2}$ [/mm]

hier stecke ich fest.


Stimmen a,b und wie komme ich bei c weiteR?



Ich habe diese Fragen in keinem anderen Forum gestellt.



Danke und Gruss

kushkush

        
Bezug
Fibonacci Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:47 So 13.02.2011
Autor: kamaleonti

Guten Abend,
> Beweise folgende Aussagen:
>  
> [mm]a) \sum_{k=0}^{n}f_{k}=f_{n+2}-1[/mm]
>  
> [mm]b) \sum_{k=0}^{n}f_{2k+1}=f_{2n+2}[/mm]
>  
> [mm]c) f^{2}_{n+1}=f_{n}f_{n+2}+(-1)^{n}[/mm]
>  Hallo,
>  
>
> a)
>
> Induktionsvoraussetzung: [mm]\sum_{k=0}^{n}f_{k}=f_{n+2}-1[/mm]
>  
> Induktionsanfang: mit n=1: [mm]f_{0}+1=2-1[/mm]
>  
> Induktionsschritt [mm]n\rightarrow[/mm] n+1:
>
> [mm]\sum_{k=0}^{n+1}f_{k}=\sum_{k=0}^{n}f_{k}+f_{n+1}=f_{n+2}-1+f_{n+1}=f_{n+3}-1=f_{(n+1)+2}-1[/mm]
>  

Ok.

> b)
>  IV: [mm]\sum_{k=0}^{n}f_{2k+1}=f_{2n+2}[/mm]
>  
> IA: [mm]$n=1$:f_{1}+f_{3}=f_{4}$[/mm]
>  
> IS [mm]n\rightarrow n+1[/mm]:
>  
> [mm]\sum_{k=0}^{n+1}f_{2k+1}=\sum_{k=0}^{n}f_{2k+1}+f_{2n+3}=f_{2n+2}+f_{2n+3}=f_{2n+4}=f_{2(n+1)+2}[/mm]
>  

Ok.

> c)

Da ich aufgrund deiner ersten beiden Beweise davon ausgehe, das bei dir f(0)=0, f(1)=1 die Startwerte sind:
Sollte die Behauptung für c nicht eher lauten [mm] $f^{2}_{n+1}=f_{n}f_{n+2}+(-1)^{n+1}$? [/mm]

> IV:  [mm]f^{2}_{n+1}=f_{n}f_{n+2}+(-1)^{n}[/mm]
> IA:  [mm]n=0[/mm]: [mm]1=1[/mm]
>  
> IS:
>  
> [mm]f^{2}_{(n+1)+1)}=(f_{n+1}+f_{n})^{2}=f^{2}_{n+1}+2f_{n}f_{n+1}+f^{2}_{n}=f_{n}f_{n+2}+(-1)^{n}+2f_{n}f_{n+1}+f_{n}^{2}[/mm]
>  
> hier stecke ich fest.

Gruß

Bezug
                
Bezug
Fibonacci Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:55 So 13.02.2011
Autor: kushkush

Hallo kamaleonti,


>Ok.  

Danke für die Korrektur.

> Da ich aufgrund deiner ersten beiden Beweise davon ausgehe, das bei dir > > > f(0)=0, f(1)=1 die Startwerte sind:
> Sollte die Behauptung für c nicht eher lauten

Ich hab's nochmal nachgeschaut. So wie in meinem ersten Post [mm] ($f^{2}_{n+1}=f_{n}f_{n+2}+(-1)^{n}$) [/mm] steht es auf dem Aufgabenblatt.


Gruss


kushkush


Bezug
                        
Bezug
Fibonacci Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:32 So 13.02.2011
Autor: kamaleonti


> Hallo kamaleonti,
>  
>
> >Ok.  
>
> Danke für die Korrektur.
>
> > Da ich aufgrund deiner ersten beiden Beweise davon ausgehe,
> das bei dir > > > f(0)=0, f(1)=1 die Startwerte sind:
> > Sollte die Behauptung für c nicht eher lauten
>  
> Ich hab's nochmal nachgeschaut. So wie in meinem ersten
> Post ([mm]f^{2}_{n+1}=f_{n}f_{n+2}+(-1)^{n}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

) steht es auf dem Aufgabenblatt.
Ohja, da hatte ich wohl nen Zahlendreher. Dann will ich jetzt wenigstens probieren, dir vernünftig zu helfen ;-)

> IV:  $ f^{2}_{n+1}=f_{n}f_{n+2}+(-1)^{n} $
> IA:  $ n=0 $: $ 1=1 $
>  
> IS:
>  
> $ f^{2}_{(n+1)+1)}=(f_{n+1}+f_{n})^{2}=f^{2}_{n+1}+2f_{n}f_{n+1}+f^{2}_{n}=f_{n}f_{n+2}+(-1)^{n}+2f_{n}f_{n+1}+f_{n}^{2} $

Es ist ungünstig, dass du am Anfang gleich das ganze Quadrat ersetzt.
Ich habe meine Induktion jetzt etwas anders gestaltet, ich beginn mal bei der
IV: $f^{2}_{n+1}-f_{n}f_{n+2}=(-1)^{n}$ (Behauptung umgestellt)
IB: $f^{2}_{n+2}-f_{n+1}f_{n+3}=(-1)^{n+1}$
IS:
$f^{2}_{n+2}-f_{n+1}f_{n+3}=f_{n+2}(f_n+f_{n+1}})-f_{n+1}(f_{n+2}+f_{n+1})$=$f_{n+1}f_{n+2}+f_nf_{n+2}-f_{n+1}^2-f_{n+1}f_{n+2}=f_{n}f_{n+2}-f_{n+1}^2$=$-(-1)^n=(-1)^{n+1}$

Gruß

Bezug
                                
Bezug
Fibonacci Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:38 So 13.02.2011
Autor: kushkush

Hallo kamaleonti,

>> Es ist ungünstig, dass du am Anfang gleich das ganze Quadrat ersetzt.
>> Ich habe meine Induktion jetzt etwas anders gestaltet, ich beginn mal bei der


Danke für deine Lösung!



Gruss

kushkush

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]