www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis-Sonstiges" - Fibonacci
Fibonacci < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fibonacci: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:13 Di 08.05.2007
Autor: Bodo0686

Aufgabe
Beweisen Sie mit Hilfe der Vollständigen Induktion

F(n-1)F(n+1) = [mm] f_n^2 [/mm] +1 für n [mm] \in \IN [/mm] , n gerade

Die folge ist folgendermaßen Definiert!

[mm] F_1:= [/mm] 1, [mm] F_2:= [/mm] 1 , [mm] F_n:= [/mm] F_(n-1) + F_(n+2), für n= 3,4 ...

Hallo zusammen,

ich bräuchte dringend Hilfe für oben genannte Aufgabe.
Und zwar gehts mir da wieder um den I.S ...

I.A. n=2

[mm] F_1 [/mm] * [mm] F_3 [/mm] = [mm] F_2^2 [/mm] + 1

I.S. n -> n+2 (wegen n gerade)

F_(n+1) * F_(n+3) = F_(n+2) ^2 +1

Kann mir jemand hierbei behilflich sein?

Danke und Grüße
Bodo0686

Diese Frage habe ich noch in keinem weiteren Forum gestelllt!


        
Bezug
Fibonacci: Antwort
Status: (Antwort) fertig Status 
Datum: 19:32 Di 08.05.2007
Autor: M.Rex

Hallo.

Zuerst mal:

Die Fibonacci-Zahlen sind wie folgt definiert:

[mm] f_{n}:=f_{n-1}+f_{n\red{-}2} [/mm]
[mm] f_{1}:=1, f_{2}:=1 [/mm]


[mm] f_{n+2} [/mm] macht keinen Sinn, da dier Wert noch nicht bekannt ist.

Also:
Ind-Anf. (n=3):
[mm] f_{3}=1+1=2, f_{4}=2+1=3 [/mm]
[mm] f_{3-1}*f_{3+1}=f_{2}*f_{4}=2+3=5=4+1=2²+1=f_{3}²+1 [/mm]

Ind-Vorauss.

für ein n gelte besagte Formel.

Ind-Schritt:

[mm] f_{n-1}*f(n+1)=(f_{n-3}+f_{n-2})(f_{n-1}+f_{n})=... [/mm]

Hilft das erstmal weiter?

Marius


Bezug
                
Bezug
Fibonacci: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:43 Di 08.05.2007
Autor: Bodo0686


> Hallo.
>  
> Zuerst mal:
>  
> Die Fibonacci-Zahlen sind wie folgt definiert:
>  
> [mm]f_{n}:=f_{n-1}+f_{n\red{-}2}[/mm]
>  [mm]f_{1}:=1, f_{2}:=1[/mm]
>  
>
> [mm]f_{n+2}[/mm] macht keinen Sinn, da dier Wert noch nicht bekannt
> ist.
>  
> Also:
>  Ind-Anf. (n=3):
>  [mm]f_{3}=1+1=2, f_{4}=2+1=3[/mm]


In der Aufgabe steht, dass n gerade sein soll, aber warum setzt du jetzt n=3?


> [mm]f_{3-1}*f_{3+1}=f_{2}*f_{4}=2+3=5=4+1=2²+1=f_{3}²+1[/mm]
>  
> Ind-Vorauss.
>  
> für ein n gelte besagte Formel.
>  
> Ind-Schritt:
>  
> [mm]f_{n-1}*f(n+1)=(f_{n-3}+f_{n-2})(f_{n-1}+f_{n})=...[/mm]
>  
> Hilft das erstmal weiter?
>  
> Marius
>  

Nicht wirklich, ich muss ja schließen das [mm] F_{n-1} F_{n+1} [/mm] = [mm] F_n^2 [/mm] +1 ergibt im I.A.
So, und im I.S soll das ganze ja für n - > n+1 gezeigt, da aber n gerade sein soll, müsste man doch
eigentlich für n=2 setzen...???

Wie du auf den I.S kommst is mir ein bisschen unklar...

Bezug
                        
Bezug
Fibonacci: Antwort
Status: (Antwort) fertig Status 
Datum: 22:48 Di 08.05.2007
Autor: Ankh


> In der Aufgabe steht, dass n gerade sein soll, aber warum
> setzt du jetzt n=3?

Richtig, du solltest mit n=2 anfangen.


> Nicht wirklich, ich muss ja schließen das [mm]F_{n-1} F_{n+1}[/mm] =
> [mm]F_n^2[/mm] +1 ergibt im I.A.
>  So, und im I.S soll das ganze ja für n - > n+1 gezeigt, da

> aber n gerade sein soll, müsste man doch
> eigentlich für n=2 setzen...???

Im Induktionsschritt musst du von der Aussage für [mm] F_n [/mm] auf die Aussage für [mm] F_{n+2} [/mm] schließen (nicht [mm] F_{n+1}), [/mm] da wir nur gerade n betrachten.

>
> Wie du auf den I.S kommst is mir ein bisschen unklar...

Dort musst du die Definition der Folge einsetzen. (Ein Folgenglied ist die Summe seiner beiden Vorgänger.)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]