www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Fibonacci-Zahlen: Reste mod m
Fibonacci-Zahlen: Reste mod m < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fibonacci-Zahlen: Reste mod m: Literaturhinweise - Ideen
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:29 Do 19.05.2005
Autor: aussie78

Hallo ihr Lieben!

Ich muss für ein Fachwiss. Seminar über Zahlentheorie einen Vortrag halten. Thema des Vortrages:   Fibonacci-Zahlen: Reste modulo m.

Inhaltlich dazu sind folgende Fragen/Aspekte interessant:
Welche Reste lässt die Fibonacci-Folge bzgl. verschiedener m, dabei insbesondere m=prim?

Aufstellen der Restefolge bzgl. der verschiedenen Reste m.

Sind diese Restefolgen immer periodisch? Beweis der Tatsache.

Wie lässt sich die Periodenlänge berechnen? Behauptungen/Beweise  



Vor meinem Vortrag sind noch zwei andere über Fibonacci-Zahlen, die Themen sind zum einen "Einführung zu Fibonacci-Zahlen", zum anderen "Die Binetsche Formel, Goldener Schnitt".


Mein Problem ist nun, dass ich bisher kaum Literatur dazu gefunden habe, weder in der Bibliothek noch im Internet. Hat jemand von euch eine Idee, wo ich noch etwas passendes zu diesem Thema finden könnte?

Vielen Dank schon mal im voraus.

LG aussie78



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Fibonacci-Zahlen: Reste mod m: Antwort
Status: (Antwort) fertig Status 
Datum: 18:54 Mi 25.05.2005
Autor: Hanno

Hallo aussie!

Ein paar Überlegungen meinerseits:

Betrachtest du die Folge deR Fibonacci-Zahlen modulo m, so kann, wie bei der "normalen" Fibonacci-Folge, unter Kenntnis zweier aufeinander folgender Glieder die komplette Folge berechnet werden; denn du kannst dann sowohl auf die Nachfolger, als auch auf die Vorgänger (!) schließen. Gerade letztere Eigenschaft scheint bei der Periodizität von Nutzen, denn: betrachtest du die Folge [mm] $f:N\to\{0,2,...,m-1\}^2$ [/mm] mit [mm] $f(n)=(f_{n} [/mm] mod [mm] m,f_{n+1}\mod [/mm] m)$, so muss es ein [mm] $n\leq m^2+1$ [/mm] mit [mm] $f(n)=f(n_0), 1\leq n_0

Ich hoffe ich konnte dir mit diesen kleinen Überlegungen ein wenig helfen.


Liebe Grüße,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]