www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrieren und Differenzieren" - Fehlerterm, Peano Kern
Fehlerterm, Peano Kern < Integr.+Differenz. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fehlerterm, Peano Kern: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:22 So 26.10.2014
Autor: mimo1

Aufgabe
Beweise

[mm] \integral_{0}^{1}{K_p(t) dt}=\bruch{1}{p!}(\bruch{1}{p+1}-\summe_{i=1}^{s}b_i\dcot c_i^p) [/mm]

habe es ausprobiert aber irgendwie komme ich nicht auf das ergebnis. ich hoffe ihr könnt mir dabei helfen
also ist [mm] K_p [/mm] folg. def im Skript

[mm] K_p(x)=\bruch{(1-x)^p}{p!}-\summe_{i=1}^{s}b_i((c_i-x)_+)^{p-1} [/mm]

ich habe diese formel benutz.

[mm] \integral_{0}^{1}{K_p(t) dt}=\integral_{0}^{1}{ \bruch{(1-t)^p}{p!}-\summe_{i=1}^{s}b_i\bruch{((c_i-t)_+)^{p-1}}{(p-1)!} dt}=\integral_{0}^{1}\bruch{(1-t)^p}{p!}-(b_1(\bruch{(c_1-t)_+)^{p-1}}{(p-1)!}+b_2(\bruch{(c_2-x)_+)^{p-1}}{(p-1)!}+...+b_s(\bruch{(c_s-t)_+)^{p-1}}{(p-1)!})dt [/mm]

[mm] =(-1)\cdot \bruch{(1-t)^p}{p!}+b_1(\bruch{(c_1-x)_+)^{p-1}}{(p-1)!}+b_2(\bruch{(c_2-t)_+)^{p-1}}{(p-1)!}+...+b_s(\bruch{(c_s-t)_+)^{p-1}}{(p-1)!}|_{0}^{1} [/mm]

man erhält dann nachdem man die grenzen einsetzt
[mm] =b_1(\bruch{(c_1-1)_+)^{p-1}}{(p-1)!}+b_2(\bruch{(c_2-1)_+)^{p-1}}{(p-1)!}+...+b_s(\bruch{(c_s-1)_+)^{p-1}}{(p-1)!}+\bruch{1}{p!}-(\bruch{b_1c_1^{p-1}+b_2c_2^{p-1}+...+b_sc_s^{p-1}}{(p-1)!}) [/mm]

[mm] =\bruch{1}{p!}+\summe_{i=1}^{s}\bruch{b_i(c_i-1)^{p-1}}{(p-1)!}-\bruchb_ic_i^{p-1}{(p-1)!} [/mm]

[mm] =\bruch{1}{p!}+\summe_{i=1}^{s}\bruch{b_i(c_i-1)^{p-1}-b_ic_i^{p-1}}{(p-1)!} [/mm]

ist es möglich noch weiter zusammenzufassen außer dass man [mm] b_i [/mm] ausklammer kann? ist es soweit richtig was ich da gemacht habe. könnt ihr mir ein tipp geben wie ich zum ergebnis gelange. ich bin für jede hilfe dankbar.

gruß,
mimo1

        
Bezug
Fehlerterm, Peano Kern: Antwort
Status: (Antwort) fertig Status 
Datum: 21:51 So 26.10.2014
Autor: andyv

Hallo,

da ist doch einiges schief gelaufen bei deiner Integration.

Es ist doch [mm] $\int_{0}^1 (1-t)^p \mathrm{d}t=\frac{1}{p+1}$ [/mm] und
[mm] $\int_{0}^1 (c_i-t)_+^{p-1} \mathrm{d}t=\int_{0}^{c_i} (c_i-t)_+^{p-1} \mathrm{d}t=\frac{c_i^p}{p}$. [/mm]

Damit solltest du nun auf das gewünschte Ergebnis kommen.

Liebe Grüße

Bezug
                
Bezug
Fehlerterm, Peano Kern: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:34 Mi 29.10.2014
Autor: mimo1

danke für den hinweis. ich habe es soweit auch hinbekommen.
meine fragen ist nun warum du für die obere Grenze also 1 [mm] c_i [/mm] ersetzt?


Bezug
                        
Bezug
Fehlerterm, Peano Kern: Antwort
Status: (Antwort) fertig Status 
Datum: 19:51 Mi 29.10.2014
Autor: andyv

Es ist [mm] $c_i\leq [/mm] 1$ und der Integrand für [mm] $t>c_i$ [/mm] verschwindet wegen Definition von $x_+$.

Liebe Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]