www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Fehlerrechnung die 2.
Fehlerrechnung die 2. < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fehlerrechnung die 2.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:06 So 25.05.2008
Autor: marc62

Aufgabe
Die Zahl
π werde durch die Näherungswerte [mm] z_1= \bruch{22}{7} [/mm] bzw. [mm] z_2= \bruch{355}{113} [/mm] ersetzt.
a)
Wie groß sind die absoluten und relativen Fehler von [mm] z_1 [/mm] und [mm] z_2? [/mm]

b)
Welcher Fehler ergibt sich für den Umfang u eines Kreises mit dem Radius [mm] r=(5,00\pm0,01)m, [/mm] wenn u unter Verwendung von [mm] z_1 [/mm] bzw. [mm] z_2 [/mm] berechnet wird?

c)
Welche Schlussfolgerung ziehen Sie aus b) hinsichtlich der Verwendung von [mm] z_1 [/mm] bzw. [mm] z_2 [/mm] für „Alltagsberechnungen“?

Zu a,

der absolute Fehler ist doch einfach die Differenz von [mm] \pi [/mm] und [mm] z_1 [/mm] bzw. [mm] z_2 [/mm] , oder?
und der relative Fehler einfach der Quotient aus relativen Fehler und [mm] \pi, [/mm] oder?

zu b,
da berechene ich doch einfach jeweils mit [mm] \pi [/mm] und den Nährungswerten und daraus ergibt sich doch dann der Fehler

        
Bezug
Fehlerrechnung die 2.: Antwort
Status: (Antwort) fertig Status 
Datum: 14:55 So 25.05.2008
Autor: Martinius

Hallo,

> Die Zahl
>  π werde durch die Näherungswerte [mm]z_1= \bruch{22}{7}[/mm]
> bzw. [mm]z_2= \bruch{355}{113}[/mm] ersetzt.
>  a)
>  Wie groß sind die absoluten und relativen Fehler von [mm]z_1[/mm]
> und [mm]z_2?[/mm]
>  
> b)
>  Welcher Fehler ergibt sich für den Umfang u eines Kreises
> mit dem Radius [mm]r=(5,00\pm0,01)m,[/mm] wenn u unter Verwendung
> von [mm]z_1[/mm] bzw. [mm]z_2[/mm] berechnet wird?
>  
> c)
>  Welche Schlussfolgerung ziehen Sie aus b) hinsichtlich der
> Verwendung von [mm]z_1[/mm] bzw. [mm]z_2[/mm] für „Alltagsberechnungen“?
>  Zu a,
>
> der absolute Fehler ist doch einfach die Differenz von [mm]\pi[/mm]
> und [mm]z_1[/mm] bzw. [mm]z_2[/mm] , oder?

Ja.

>  und der relative Fehler einfach der Quotient aus relativen
> Fehler und [mm]\pi,[/mm] oder?


Der relative Fehler ist der Quotient aus absolutem Fehler und [mm] \pi. [/mm]

  

> zu b,
> da berechene ich doch einfach jeweils mit [mm]\pi[/mm] und den
> Nährungswerten und daraus ergibt sich doch dann der Fehler

Ja.


LG, Martinius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]