www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Interpolation und Approximation" - Fehlerquadrate mit Cholesky
Fehlerquadrate mit Cholesky < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fehlerquadrate mit Cholesky: Tipp / Erklärung
Status: (Frage) beantwortet Status 
Datum: 23:49 Di 27.10.2009
Autor: chmbw

Aufgabe
Bestimmen Sie nach dem Fehlerquadratprinzip ein Polynom 1. Grades, das die folgenden funf Punkte ausgleicht:

  0      1     2      3      4
1.5   2.1   2.8   3.7   4.1

(a) Ohne Verwendung der QR-Zerlegung mit dem Cholesky-Algorithmus.

Hallo erstmal!

Mir ist beim rechnen dieser Aufgabe folgende Frage gekommen:

kann ich auch Polynome mit höherem Grad als 1 rauskriegen?

Der Ansatz ist hier doch:

[mm] A^{T} [/mm] * A [mm] *\vec{x} [/mm] = [mm] A^{T} [/mm] * [mm] \vec{b} [/mm] woraus durch Cholesky folgt: [mm] A^{T}A =LL^{T} [/mm]

[mm] A^{T} [/mm] * A bzw. [mm] A^{T} [/mm] * [mm] \vec{b} [/mm] ergeben ja eine 2x2 bzw. 2x1 Matrix. Sprich es passt wunderbar, dass ich ein Polynom 1. Grades suche [mm] (\vec{x} [/mm] = (x1 ; [mm] x2)^T [/mm] )

Was mache ich aber, wenn jetzt beispielsweise ein Polynom vom Grad 2 oder 3 gesucht wird? Vielen Dank für eure Antworten im Voraus!

Grüße

PS:

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Fehlerquadrate mit Cholesky: erledigt
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:53 Mi 28.10.2009
Autor: chmbw

Hat sich erledigt, ich hatte was grundlegendes im Verfahren nicht verstanden!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]