www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Fehlerhafte Einheiten
Fehlerhafte Einheiten < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fehlerhafte Einheiten: Aufgabe1
Status: (Frage) beantwortet Status 
Datum: 13:00 So 30.07.2006
Autor: carina1

Wer kann mir helfen, weiss nicht wie ich es anfangen soll!

In einer Woche werden 1200 Einheiten produziert, jede 32. Einheit ist grün.
Jeweils nach 20 Einheiten wird die Produktionsanlage neu eingestellt.
Ist das 1. Teil nach der Kalibrierung ein grünes Teil so ist diese fehlerhaft.
Wieviele Teile sind fehlerhaft.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Fehlerhafte Einheiten: Aufgabe richtig verstanden?
Status: (Antwort) fertig Status 
Datum: 14:55 So 30.07.2006
Autor: Bastiane

Hallo!

> Wer kann mir helfen, weiss nicht wie ich es anfangen soll!
>  
> In einer Woche werden 1200 Einheiten produziert, jede 32.
> Einheit ist grün.
>  Jeweils nach 20 Einheiten wird die Produktionsanlage neu
> eingestellt.
>  Ist das 1. Teil nach der Kalibrierung ein grünes Teil so
> ist diese fehlerhaft.
>  Wieviele Teile sind fehlerhaft.

Verstehe ich die Aufgabe richtig, dass es also darauf ankommt, ob das 21, 41, 61, 81, usw. Teil grün ist? Also ein Vielfaches von 32? Dann brauchst du doch nur alle diese Vielfachen aufzuschreiben und die Reihe 21, 41, 61, 81 zu verlängern, und dann gucken, wie viele Zahlen in beiden drin vorkommen.

Viele Grüße
Bastiane
[cap]


Bezug
        
Bezug
Fehlerhafte Einheiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:10 So 30.07.2006
Autor: carina1

wie kann man denVergleich der 2 Zahlenreihen in einer Formel ausdrücken?????

carina

Bezug
                
Bezug
Fehlerhafte Einheiten: Antwort
Status: (Antwort) fertig Status 
Datum: 22:49 So 30.07.2006
Autor: Teufel

Naja, also wenn man 21, 41, 61 etc. als Zahlenfolge schreiben will, sieht das so aus:
[mm] a_{n}=20n+1 [/mm] (wobei n  [mm] \in \IN [/mm] ist)
und 32, 64, 96 u.s.w. wäre
[mm] b_{k}=32k [/mm]  (k  [mm] \in \IN). [/mm]

Nun müsste ma schauen wann [mm] a_{n}=b_{k} [/mm] ist, aber ich glaube das wäre zu umständlich...

Dann hättest du da 20n+1=32k, aber du kannst ja nur Ergebnisse mit natürlichen Zahlen gebrauchen. Und so kommst du wohl meistens nur auf Kommazahlen.

Oder wenn du weiter umstellst hättest du auch [mm] n=1,6k-\bruch{1}{20} [/mm] was genauso toll wäre.




Bezug
        
Bezug
Fehlerhafte Einheiten: gibt es überhaupt Fehler?
Status: (Antwort) fertig Status 
Datum: 23:30 So 30.07.2006
Autor: chrisno

Ich schließe mich erst mal Bastiane an, aber dann kommt es etwas darauf an, wie die Aufgabe zu verstehen ist.

Die Interpretation beginnt so:
Teile und Einheiten ist das Gleiche.
Zu Wochenbeginn wird ganz neu angefangen, also auch mit einer Kalibrierung.
Nun kommt die Frage: werden erst mal 31 nicht grüne Teile zu Wochenbeginn hergestellt?
Dann ist es ja so, dass die Teile nach der Kalibrierung die Nummern 1, 21, 41, 61, und so weiter haben. Also immer eine 1 als letzte Ziffer. Die grünen Teile haben die Nummern 32, 64, 96 und so weiter. Die haben also nie eine 1 als letzte Ziffer. Damit kommt der Fall nicht vor, das ein grünes Teil unmittelbar nach der Kalibrierung darn ist. Also werden keine fehlerhaften Teile hergestellt.

Leider steht das so genau nicht in der Aufgabe. Aber es ist nun schon mal klar, dass Fehler nur entstehen können, wenn zu Wochenbeginn eine gerade Anzahl nichtgrüner vor dem ersten grünen Teil hergestellt wird.

Falls Du diese Fälle untersuchen willst, dann ist vielleicht das Hinschreiben der Nummernlisten ein guter Weg. Ein Fall ist, dass erst mal 20 nichtgrüne Teile hergestellt werden. Dann ist Nummer 21 grün und damit die Kaliebrierung fehlerhaft und die 20 Teile bis zur nächsten Kalibrierung auch. Danach ist eine ganze Weile Ruhe, nämlich bis zum kleinsten gemeinsamen Vielfachen von 32 und 20. Dies ist 160 und damit ist dann bei Nummer 181 wieder ein grünes Teil nach der Kalibrierung dran. Also schreib die Reihe
21, 181, 341, 501, 661, 821, 981, 1141 hin. Damit sind 8 mal 20 Teile fehlerhaft.

Damit ist das aber noch lange nicht erledigt.
Numm nal an, Nummer 19 ist grün. Dann sind 19, 51, 83, 115, 147, 179, 211, grün. Die Endziffer 1 kommt immer nach 5 mal 32 Teilen wieder, und hat daher immer eine ungerade Ziffer in der Zehnerstelle. Also gibt es auch hier keine fehlerhaften Teile.

Ohne das ich das weiter prüfe und begründe entstehen damit auch keine Fehler bei grünen Nummern 3, 7, 11, 15, 19, 23, 27, 31.

Nun muß man noch bei den Nummern 1, 5, 9, 13, 17, 21, 25, 29 etwas genauer hinschauen.
Bei 1 läuft es wie bei 21, bloß ist dann die letzte Übereinstimmung bei 1121. Also auch 160 Teile fehlerhaft.
Für alle weiteren bis einschließlich 29, muß noch geprüft werden, ob nicht eine Zahl größer als 1200 herauskommt, es also nur 7 mal 20 fehlerhafte Teile werden.


Kommt die Aufgabe aus einem Buch?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]