www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Fehlerabschätzung
Fehlerabschätzung < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fehlerabschätzung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:23 Sa 14.11.2009
Autor: didda

Aufgabe
Die Funktion [mm] f:]0,\infty[\to\IR, f(x)=\bruch{1}{x} [/mm] werde im Intervall [a,b] (0<a<b) durch ein Polynom [mm] p_{n} [/mm] vom Grad [mm] \le [/mm] n in den Knoten [mm] x_{i}:=a+i\bruch{b-a}{n}, [/mm] i=0,1,..n interpoliert. Zeigen sie
[mm] |f(\bruch{a+b}{2})-p_{n}(\bruch{a+b}{2})|\le\bruch{1}{a}*(\bruch{b-a}{2a})^{n+1} [/mm]
und folgern sie daraus eine hinreichende Bedingung für a und b so, dass
[mm] \limes_{n\rightarrow\infty}p_{n}(\bruch{a+b}{2})=f(\bruch{a+b}{2}) [/mm]
ist

Hallo Matheforum,
im Zuge meines Mathestudiums ist dieses Semester unter anderem auch die Numerik dran, doch schon bei der zweiten Hausaufgabenreihe habe ich ein Problem, nämlich eben obige Aufgabe.
Leider fehlt mir jeglicher Zugang dazu, ich weiß nicht so genau was ich da machen soll. Muss ich die Funktion erst interpolieren und dann den Fehler überprüfen oder kann man so etwas allgemein zeigen? Wenn ich interpolieren soll, nach welcher Methode?

Wäre echt cool wenn ihr mir da helfen könntet :)

MfG und Danke schonmal.

        
Bezug
Fehlerabschätzung: Antwort
Status: (Antwort) fertig Status 
Datum: 04:48 Di 17.11.2009
Autor: felixf

Hallo!

> Die Funktion [mm]f:]0,\infty[\to\IR, f(x)=\bruch{1}{x}[/mm] werde im
> Intervall [a,b] (0<a<b) durch ein Polynom [mm]p_{n}[/mm] vom Grad
> [mm]\le[/mm] n in den Knoten [mm]x_{i}:=a+i\bruch{b-a}{n},[/mm] i=0,1,..n
> interpoliert. Zeigen sie
> [mm]|f(\bruch{a+b}{2})-p_{n}(\bruch{a+b}{2})|\le\bruch{1}{a}*(\bruch{b-a}{2a})^{n+1}[/mm]
>  und folgern sie daraus eine hinreichende Bedingung für a
> und b so, dass
> [mm]\limes_{n\rightarrow\infty}p_{n}(\bruch{a+b}{2})=f(\bruch{a+b}{2})[/mm]
> ist
>
>  im Zuge meines Mathestudiums ist dieses Semester unter
> anderem auch die Numerik dran, doch schon bei der zweiten
> Hausaufgabenreihe habe ich ein Problem, nämlich eben obige
> Aufgabe.
>  Leider fehlt mir jeglicher Zugang dazu, ich weiß nicht so
> genau was ich da machen soll. Muss ich die Funktion erst
> interpolieren und dann den Fehler überprüfen oder kann
> man so etwas allgemein zeigen? Wenn ich interpolieren soll,
> nach welcher Methode?

Du sollst nicht konkret Polynome interpolieren, sondern etwas abstrakt zeigen.

Ihr hattet doch sicher eine Schranke fuer den Interpolationsfehler bei oft genug stetig diffbaren Funktionen, oder? Versuch doch mal sowas hier anzuwenden. Die Funktion $f(x) = [mm] \frac{1}{x}$ [/mm] kannst du ja konkret $n$-mal ableiten und das in die Schranke einsetzen.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]