www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Fehler einer Näherung
Fehler einer Näherung < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fehler einer Näherung: Tipp
Status: (Frage) beantwortet Status 
Datum: 23:04 Fr 15.03.2013
Autor: redrum

Aufgabe
In der Praxis wird meist die folgende Näherung verwendet [mm] (1+x)^a \approx [/mm] 1+a*x   , [mm] a\in\IR. [/mm]
Schätzen Sie für a= [mm] \bruch{1}{2} [/mm]  den Fehler dieser Näherung im Bereich [mm] |x|\le0,1 [/mm] ab

Guten Abend,

ich bin zu folgender Lösung gekommen:

|R(0,1)| < [mm] 1+\bruch{1}{2} [/mm] *|x| < 1,05

Habe an dieser Stelle auf die Restglieddarstellung nach Lagrange verzichtet, da ich nicht genau weiß wie ich sie aufstellen sollte.
Habe jetzt x so gewählt, dass R maximal ist.

Danke für Hilfe

        
Bezug
Fehler einer Näherung: Antwort
Status: (Antwort) fertig Status 
Datum: 01:00 Sa 16.03.2013
Autor: Al-Chwarizmi


> In der Praxis wird meist die folgende Näherung verwendet
> [mm](1+x)^a \approx[/mm] 1+a*x   , [mm]a\in\IR.[/mm]
>  Schätzen Sie für a= [mm]\bruch{1}{2}[/mm]  den Fehler dieser
> Näherung im Bereich [mm]|x|\le0,1[/mm] ab
>  Guten Abend,
>  
> ich bin zu folgender Lösung gekommen:
>  
> |R(0,1)| < [mm]1+\bruch{1}{2}[/mm] *|x| < 1,05
>
> Habe an dieser Stelle auf die Restglieddarstellung nach
> Lagrange verzichtet, da ich nicht genau weiß wie ich sie
> aufstellen sollte.
>  Habe jetzt x so gewählt, dass R maximal ist.


Hallo redrum,

ich verstehe nicht ganz, was genau du mit R(0,1) bezeichnest.

Man könnte die Aufgabe so verstehen, dass der maximale
Fehler für alle x im Intervall [-0.1 ... +0.1] gefragt ist.
Dies könnte man mit einer ganz simplen Rechnung
erledigen, da die größte Abweichung bestimmt (das
wäre auch leicht zu beweisen) an einem der Ränder
des Intervalls entsteht.

Vermutlich ist aber doch gemeint, dass man eine
Abschätzung des Fehlers in Abhängigkeit von x
findet. Dazu würde sich schon das Lagrange-Restglied
empfehlen. Stelle also einmal die Taylorformel
f(x) = [mm] T_1(x)+R_1(x) [/mm] für die zu betrachtende Funktion
$\ f(x)\ =\ [mm] (1+x)^{1/2}$ [/mm]  auf , natürlich entwickelt an der
Stelle [mm] x_0=0 [/mm] !

LG ,   Al-Chw.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]