www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrieren und Differenzieren" - Fehler der Mittelpunktsformel
Fehler der Mittelpunktsformel < Integr.+Differenz. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fehler der Mittelpunktsformel: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:47 Sa 18.01.2014
Autor: Differential

Aufgabe
Sei [mm] $f\in C^2[a,b]$, $I[f]:=\int_a^b f(x)\text{ dx}$ [/mm] und [mm] $$M_n[f]:=\frac{b-a}{n}\sum_{k=1}^nf\left(a+\frac{2k-1}{n}(b-a)\right)$$ [/mm]
Es ist die folgende Abschätzung zu beweisen: [mm] $$|I_n[f]-M_n[f]|\le \frac{b-a}{24}\displaystyle\max_{x\in [a,b]}|f''(x)|h^2\;,$$ [/mm] wobei $h$ die Schrittweite des Verfahrens sei.



Ich verzweifle an dieser Aufgabe. Alles läuft wohl darauf hinaus die Funktion an einer Stelle mit dem Taylor-Polynom zweiten Grades zu approximieren. Doch an welcher Stelle nur?

Ich habe bereits alles mögliche ausprobiert ;) Am naheliegendsten erschien mir [mm] $x_k:=a+(2k-1)h$ [/mm] mit [mm] $h:=\frac{b-a}{n}$ [/mm] zu wählen. Dann erhält man durch Entwicklung an der Stelle [mm] $x_k$: $$f(x)=f(x_k)+f'(x_k)(x-x_k)+\frac{1}{2}f''(\xi)(x-x_k)^2\;\;\;\;\;(x<\xi
Hoffe ihr könnt mir weiterhelfen.


Gruß
Differential

        
Bezug
Fehler der Mittelpunktsformel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:11 Sa 18.01.2014
Autor: Differential

Die Frage scheint ja der ein oder andere gelesen zu haben. Ist sie zu schwer oder zu einfach? Bitte gebt mir etwas Feedback; gerne auch nur in Form einer Anregung.

Gruß
Differential

Bezug
        
Bezug
Fehler der Mittelpunktsformel: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Mo 20.01.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]