www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Fehler 2. Art
Fehler 2. Art < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fehler 2. Art: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:25 Mi 06.05.2009
Autor: cluedo

Aufgabe
Sei [mm] $X\sim N(\mu,225)$ [/mm] und $n=10$, sowie [mm] $\alpha=0.05$. [/mm] Die zu testende Hypothese lautet [mm] $H_0:\mu \leq [/mm] 110$.

Berechnen sie den Ablehnungsbereich

Berechnen sie den Fehler 2. Art, wenn der tatsächliche Erwartungswert 120 beträgt

Hallo,

bei der ersten Aufgabe habe ich noch kein Problem. Das geht ja einfach mit dem Einstichprobengauß-test. [mm] $H_0$ [/mm] wird immer dann abgelehnt, wenn [mm] $\bar{x}>110+\sqrt{\frac{225}{10}}\cdot [/mm] 1.6449=117.80$ ist.

Die Berechnung des Fehlers zweiter Art bereitet mir jedoch schwierigkeiten. Kann mir da jmd. helfen?

vielen dank im voraus.

ps: ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
Fehler 2. Art: Antwort
Status: (Antwort) fertig Status 
Datum: 20:25 Mi 06.05.2009
Autor: luis52

Moin,

den Fehler 2. Art begehst du, wenn du [mm] $H_0:\mu\le110$ [/mm] beibehaeltst, obwohl gilt [mm] $\mu=120$... [/mm]

vg Luis

Bezug
                
Bezug
Fehler 2. Art: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:49 Mi 06.05.2009
Autor: cluedo

ja genau, das ist mir klar, aber ich komm einfach nicht darauf wie ich diese WS nun berechne

grüße

Bezug
                        
Bezug
Fehler 2. Art: Antwort
Status: (Antwort) fertig Status 
Datum: 20:55 Mi 06.05.2009
Autor: luis52


> ja genau, das ist mir klar, aber ich komm einfach nicht
> darauf wie ich diese WS nun berechne

Berechne [mm] $P(\text{$H_0$ beibehalten})=P(\bar X\le [/mm] 117.80)$, wenn gilt [mm] $\mu=120$. [/mm]

vg Luis  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]