www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Faltung von Verteilungen
Faltung von Verteilungen < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Faltung von Verteilungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:22 So 11.01.2009
Autor: conankun

Aufgabe
Zeigen sie für die Binomialverteilung [Dateianhang nicht öffentlich]
und erläutern sie den Zusammenhang mit dem Galton Brett.

Hallo,
Wie es mit dem Galton Brett zusammenhängt kann ich mir vorstellen, nämlich dass man bei n-maligem Durchlaufen des Versuchs die Verteilung approximieren kann oder?



Aber zu der Berechnung weil da habe ich keine Ahnung:

Also wir haben in er Vorlesung folgende Definition gehabt: [Dateianhang nicht öffentlich]
Ich versteh ja schon die Definition überhaupt nicht kann mir da jemand helfen? Ich weiß man soll eigene Ansätze bringen aber ich zerbrech mir seit 2 Stunden den Kopf wie ich überhaupt anfangen soll, weil ich finde keinen Ansatz.
Ich mein ja mir is klar dass es mit der Definition gehen muss aber ich versteh gar nicht was die genau jetzt ausdrückt. Wieso muss immer alles so kompliziert formuliert sein :-( oder bin ich einfach zu doof so eine definition zu verstehen ...


Dateianhänge:
Anhang Nr. 1 (Typ: gif) [nicht öffentlich]
Anhang Nr. 2 (Typ: gif) [nicht öffentlich]
        
Bezug
Faltung von Verteilungen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:48 So 11.01.2009
Autor: luis52

Moin          conankun ,

ich muss vorausschicken, dass ich masstheoretisch nicht allzu fit bin.
Ich bin mir aber sicher, dass Folgendes zu zeigen ist:

Die Zufallsvariablen [mm] X_i [/mm] seien identisch und unabhaengig verteilt mit
[mm] P(X_i=1)=p, P(X_i=0)=1-p [/mm] und [mm] P(X_i=x)=0 [/mm] fuer [mm] x\ne0,1. [/mm] Zeige, dass gilt
[mm] $P(\sum_{i=1}^nX_i=x)=\binom{n}{x}p^x(1-p)^{n-x}$, $x=0,1,\dots,n$, [/mm] und [mm] $P(\sum_{i=1}^nX_i=x)=0$ [/mm] sonst
.

Mit vollstaendiger Induktion sollte das nicht  so schwer sein...

vg Luis          

Bezug
                
Bezug
Faltung von Verteilungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:17 Mo 12.01.2009
Autor: conankun

Dankeschön deine Antwort hat sehr zum Verständnis der Aufgabe beigetragen ich hoffe ich komme jetzt klar

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]