www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Fourier-Transformation" - Faltung von Funktionen
Faltung von Funktionen < Fourier-Transformati < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Faltung von Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:49 Di 01.12.2009
Autor: Sierra

Aufgabe
Berechne die Faltung der Funktionen [mm] (\lambda,\mu>0) [/mm]
[mm] f(x)=\bruch{1}{\lambda}*e^{-\lambda*x} [/mm] für x>0, 0 sonst
[mm] g(x)=\bruch{1}{\mu}*e^{-\mu*x} [/mm] für x>0, 0 sonst
direkt und mit Hilfe der Fourier-Transformation


Hallo,

habe noch große Schwierigkeiten, was das Thema Fouriertransformationen betrifft. Hier erstmal meine herangehensweise:
zunächst die Faltung ("*" entspricht der Faltung):
(f*g)(y)= [mm] \integral_{0}^{\infty}{f(x)*g(y-x) dx} [/mm]
[mm] =\integral_{0}^{\infty}{\bruch{1}{\lambda}*e^{-\lambda*x}*\bruch{1}{\mu}*e^{-\mu*(y-x)} dx} [/mm]
[mm] =\bruch{1}{\lambda*\mu}*\integral_{0}^{\infty}e^{-\mu*y+x(\mu-\lambda)}dx [/mm]
[mm] =\bruch{1}{\lambda\mu(\mu-\lambda)}*[e^{-\mu*y+x(\mu-\lambda)}] [/mm] wobei noch die Grenzen einzusetzen sind. Hier ist auch schon mein erstes Problem, für [mm] \infty [/mm] müsste ich doch eigentlich eine Fallunterscheidung machen, je nachdem, ob [mm] \mu>\lambda [/mm] oder andersrum?

Ist es außerdem richtig, dass ich davon ausgehe, dass ich (f*g)(y) für [mm] x\le [/mm] 0 nicht berechnen brauch, da doch 0 rauskommt, oder ?

Gruß Sierra

        
Bezug
Faltung von Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:26 Di 01.12.2009
Autor: MatthiasKr

Hallo,
> Berechne die Faltung der Funktionen [mm](\lambda,\mu>0)[/mm]
>  [mm]f(x)=\bruch{1}{\lambda}*e^{-\lambda*x}[/mm] für x>0, 0 sonst
>  [mm]g(x)=\bruch{1}{\mu}*e^{-\mu*x}[/mm] für x>0, 0 sonst
>  direkt und mit Hilfe der Fourier-Transformation
>  
>
> Hallo,
>  
> habe noch große Schwierigkeiten, was das Thema
> Fouriertransformationen betrifft. Hier erstmal meine
> herangehensweise:
>  zunächst die Faltung ("*" entspricht der Faltung):
>  (f*g)(y)= [mm]\integral_{0}^{\infty}{f(x)*g(y-x) dx}[/mm]
>  

Schau dir dieses integral genauer an: y ist fest und $g(x)=0$ fuer [mm] $x\le [/mm] 0$. Also ist $g(y-x)=0$ fuer [mm] $y-x\le [/mm] 0$. du brauchst also das integral nicht bis [mm] \infty [/mm] auszuwerten sondern nur bis ...?

> [mm]=\integral_{0}^{\infty}{\bruch{1}{\lambda}*e^{-\lambda*x}*\bruch{1}{\mu}*e^{-\mu*(y-x)} dx}[/mm]
>  
> [mm]=\bruch{1}{\lambda*\mu}*\integral_{0}^{\infty}e^{-\mu*y+x(\mu-\lambda)}dx[/mm]
>  
> [mm]=\bruch{1}{\lambda\mu(\mu-\lambda)}*[e^{-\mu*y+x(\mu-\lambda)}][/mm]
> wobei noch die Grenzen einzusetzen sind. Hier ist auch
> schon mein erstes Problem, für [mm]\infty[/mm] müsste ich doch
> eigentlich eine Fallunterscheidung machen, je nachdem, ob
> [mm]\mu>\lambda[/mm] oder andersrum?
>  

diese unterscheidung solltest du nicht benoetigen, wenn du meinen tip oben umsetzt.

> Ist es außerdem richtig, dass ich davon ausgehe, dass ich
> (f*g)(y) für [mm]x\le[/mm] 0 nicht berechnen brauch, da doch 0
> rauskommt, oder ?

wegen $f(x)=0$ fuer [mm] $x\le [/mm] 0$, richtig. [daumenhoch]

gruss
Matthias


Bezug
                
Bezug
Faltung von Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:16 Mo 07.12.2009
Autor: Sierra

Wenn auch ziemlich verspätet, vielen Dank für deine Antwort !

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]