www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Signaltheorie" - Faltung im Zeitbereich
Faltung im Zeitbereich < Signaltheorie < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Signaltheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Faltung im Zeitbereich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:18 Mo 28.12.2009
Autor: tedd

Aufgabe
Folgendes LTI-System ist gegeben, dass duch seine Impulsantwort gemäß folgender Graphik charakterisiert wird:

[Dateianhang nicht öffentlich]

Berechnen Sie die Reaktion y(t) des gegebenen LTI-Systems auf Anregung mit dem Signal [mm] x(t)=rect\left(\bruch{t-1}{2}\right) [/mm] durch Faltung im Zeitbereich. Schreiben Sie für jede Fallunterscheidung das Faltungsintegral mit seinen fallspezifischen Grenzen auf.

Hi!

Ich weis nicht wie ich bei den Faltungsintegralen die Grenzen vernünfig setze:

Also ich habe erstmal das h(t) so aufgeschrieben:

[mm] h(t)=\begin{cases} -t+2, & \mbox{für } 0 \le t < 2 \\ 0, & \mbox{sonst } \end{cases} [/mm]

Dann ist

[mm] h(t-\tau)=\begin{cases} -t+\tau+2, & \mbox{für } 0 \le t-\tau < 2 \\ 0, & \mbox{sonst } \end{cases}=\begin{cases} -t+\tau+2, & \mbox{für } t-2 < \tau \le t \\ 0, & \mbox{sonst } \end{cases} [/mm]


x(t) sieht so aus:

[Dateianhang nicht öffentlich]

und h(-t) dementsprechend:

[Dateianhang nicht öffentlich]


[mm] y(t)=\integral_{-\infty}^{\infty}{x(\tau)*h(t-\tau) d\tau} [/mm]

Jetzt hätte man den ersten Fall bei dem es noch keine Überlappung gibt. Hier muss die obere Grenze von [mm] h(-\tau) [/mm] < 0 sein also:

1.Fall t<0:

y(t)=0

Für den 2ten Fall soll die obere Grenze von [mm] h(-\tau) [/mm] von 0 bis 2 laufen.

also:

2.Fall [mm] 0\le [/mm] t < 2:

[mm] y(t)=\integral_{?}^{?}{x(\tau)*h(t-\tau) d\tau} [/mm]

So und hier ist der Punkt an dem ich nicht weiterkomme... Ich verstehe einfach nicht wie ich an die Integrationsgrenzen komme. in der oberen muss zumindest die Variable t drin vorkommen, da ich dort die Integration unterbreche?! Kann mir vielleicht einer erkären wie ich an die Grenzen komme? [ok]
Wahrscheinlich ist es ganz einfach aber ich komme einfach nicht drauf...

Danke schonmal im vorraus und besten Gruß,
tedd

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Anhang Nr. 2 (Typ: jpg) [nicht öffentlich]
Anhang Nr. 3 (Typ: jpg) [nicht öffentlich]
        
Bezug
Faltung im Zeitbereich: Antwort
Status: (Antwort) fertig Status 
Datum: 16:29 Mo 28.12.2009
Autor: fencheltee


> Folgendes LTI-System ist gegeben, dass duch seine
> Impulsantwort gemäß folgender Graphik charakterisiert
> wird:
>  
> [Dateianhang nicht öffentlich]
>  
> Berechnen Sie die Reaktion y(t) des gegebenen LTI-Systems
> auf Anregung mit dem Signal
> [mm]x(t)=rect\left(\bruch{t-1}{2}\right)[/mm] durch Faltung im
> Zeitbereich. Schreiben Sie für jede Fallunterscheidung das
> Faltungsintegral mit seinen fallspezifischen Grenzen auf.
>  Hi!
>  
> Ich weis nicht wie ich bei den Faltungsintegralen die
> Grenzen vernünfig setze:
>  
> Also ich habe erstmal das h(t) so aufgeschrieben:
>  
> [mm]h(t)=\begin{cases} -t+2, & \mbox{für } 0 \le t < 2 \\ 0, & \mbox{sonst } \end{cases}[/mm]
>  
> Dann ist
>  
> [mm]h(t-\tau)=\begin{cases} -t+\tau+2, & \mbox{für } 0 \le t-\tau < 2 \\ 0, & \mbox{sonst } \end{cases}=\begin{cases} -t+\tau+2, & \mbox{für } t-2 < \tau \le t \\ 0, & \mbox{sonst } \end{cases}[/mm]
>  
>
> x(t) sieht so aus:
>  
> [Dateianhang nicht öffentlich]
>  
> und h(-t) dementsprechend:
>  
> [Dateianhang nicht öffentlich]
>  
>
> [mm]y(t)=\integral_{-\infty}^{\infty}{x(\tau)*h(t-\tau) d\tau}[/mm]
>  
> Jetzt hätte man den ersten Fall bei dem es noch keine
> Überlappung gibt. Hier muss die obere Grenze von [mm]h(-\tau)[/mm]
> < 0 sein also:
>  
> 1.Fall t<0:
>  
> y(t)=0
>  
> Für den 2ten Fall soll die obere Grenze von [mm]h(-\tau)[/mm] von 0
> bis 2 laufen.
>  
> also:
>  
> 2.Fall [mm]0\le[/mm] t < 2:
>  
> [mm]y(t)=\integral_{?}^{?}{x(\tau)*h(t-\tau) d\tau}[/mm]
>  
> So und hier ist der Punkt an dem ich nicht weiterkomme...
> Ich verstehe einfach nicht wie ich an die
> Integrationsgrenzen komme. in der oberen muss zumindest die
> Variable t drin vorkommen, da ich dort die Integration
> unterbreche?! Kann mir vielleicht einer erkären wie ich an
> die Grenzen komme? [ok]
>  Wahrscheinlich ist es ganz einfach aber ich komme einfach
> nicht drauf...

also dein [mm] h(t-\tau) [/mm] "fährt" ja nun von links nach rechts in das viereck ein.. (und am koordinatenursprung von [mm] h(t-\tau) [/mm] steht ja das t beim ursprung).
die rechte grenze wird nun durch den "anfang" von [mm] h(t-\tau) [/mm] beschrieben, also t.. somit ist die obere grenze auch t..
die linke grenze wird durch x(t) bestimmt, und die ist ja fix 0..

ich hoffe du verstehst ein wenig von dem, ansonsten versuch ich mal ne skizze zu machen ;-)

>
> Danke schonmal im vorraus und besten Gruß,
>  tedd

gruß tee

Bezug
                
Bezug
Faltung im Zeitbereich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:38 Di 29.12.2009
Autor: tedd

Danke fü dir Antwort fencheltee :-)
> also dein [mm]h(t-\tau)[/mm] "fährt" ja nun von links nach rechts
> in das viereck ein.. (und am koordinatenursprung von
> [mm]h(t-\tau)[/mm] steht ja das t beim ursprung).
>  die rechte grenze wird nun durch den "anfang" von
> [mm]h(t-\tau)[/mm] beschrieben, also t.. somit ist die obere grenze
> auch t..
>  die linke grenze wird durch x(t) bestimmt, und die ist ja
> fix 0..
>  
> ich hoffe du verstehst ein wenig von dem, ansonsten versuch
> ich mal ne skizze zu machen ;-)
>  >

> > Danke schonmal im vorraus und besten Gruß,
>  >  tedd
>
> gruß tee

Also so ganz habe ich das noch nicht verstanden hehe.
Was klar ist, ist dass ich ja das h(t) gespiegelt habe und dann von links nach rechts über x(t) drüberfahren lasse und dann die "Gemeinsamkeit der Flächen" anschaue.

Ich nehm jetzt erstmal den 2ten Fall so wie du geschrieben hast an und sage:

[mm] y(t)=\integral_{0}^{t}{x(\tau)*h(t-\tau)d\tau} [/mm]

[mm] x(\tau) [/mm] ist konstant 2 in diesem Bereich und [mm] h(t-\tau)=\begin{cases} -t+\tau+2, & \mbox{für } 0 \le t-\tau < 2 \\ 0, & \mbox{sonst } \end{cases}=\begin{cases} -t+\tau+2, & \mbox{für } t-2 < \tau \le t \\ 0, & \mbox{sonst } \end{cases} [/mm]

also

[mm] y(t)=\integral_{0}^{t}{x(\tau)*h(t-\tau)d\tau} [/mm]

[mm] =\integral_{0}^{t}{2*(-t+\tau+2)d\tau}=-2*t^2+t^2+4*t=-t^2+4*t [/mm]

In diesem Fall ist h(-t) mit seiner rechten Grenze bis an den Rand von dem Rechteck "gefahren" und mit seiner linken Grenze an den Ursprung. Jetzt muss h(-t) noch aus dem Rechteck rausgeschoben werden...


3.Fall 2 [mm] \le [/mm] t < 4:

Hier weis ich jetzt noch weniger wodurch  beim Faltungsintegral die Grenzen bestimmt werden...
Irgendwas hat da in meinem Kopf noch nicht Klick gemacht.

Gruß,
tedd

Bezug
                        
Bezug
Faltung im Zeitbereich: Antwort
Status: (Antwort) fertig Status 
Datum: 15:04 Di 29.12.2009
Autor: fencheltee


> Also so ganz habe ich das noch nicht verstanden hehe.
>  Was klar ist, ist dass ich ja das h(t) gespiegelt habe und
> dann von links nach rechts über x(t) drüberfahren lasse
> und dann die "Gemeinsamkeit der Flächen" anschaue.
>  
> Ich nehm jetzt erstmal den 2ten Fall so wie du geschrieben
> hast an und sage:
>  
> [mm]y(t)=\integral_{0}^{t}{x(\tau)*h(t-\tau)d\tau}[/mm]
>  
> [mm]x(\tau)[/mm] ist konstant 2 in diesem Bereich und
> [mm]h(t-\tau)=\begin{cases} -t+\tau+2, & \mbox{für } 0 \le t-\tau < 2 \\ 0, & \mbox{sonst } \end{cases}=\begin{cases} -t+\tau+2, & \mbox{für } t-2 < \tau \le t \\ 0, & \mbox{sonst } \end{cases}[/mm]
>  
> also
>  
> [mm]y(t)=\integral_{0}^{t}{x(\tau)*h(t-\tau)d\tau}[/mm]
>  
> [mm]=\integral_{0}^{t}{2*(-t+\tau+2)d\tau}=-2*t^2+t^2+4*t=-t^2+4*t[/mm]
>  
> In diesem Fall ist h(-t) mit seiner rechten Grenze bis an
> den Rand von dem Rechteck "gefahren" und mit seiner linken
> Grenze an den Ursprung. Jetzt muss h(-t) noch aus dem
> Rechteck rausgeschoben werden...
>  
>
> 3.Fall 2 [mm]\le[/mm] t < 4:
>  
> Hier weis ich jetzt noch weniger wodurch  beim
> Faltungsintegral die Grenzen bestimmt werden...
>  Irgendwas hat da in meinem Kopf noch nicht Klick gemacht.

nun fährt das dreieck aus dem rechteck wieder raus.. nach rechts wird dies nun durch die rechte kante vom viereck begrenzt (also obere grenze = 2), da dahinter keine überlappung mehr ist..
die linke begrenzung ist ja abhängig vom dreieck (also wie weit es "fährt".. und das "schlusslicht" vom dreieck ist ja mit t-2 gegeben) also untere grenze t-2.
also am einfachsten ist das echt mit ner folie bei komplizierteren beispielen, beschreiben ist da gar nicht so einfach

>  
> Gruß,
>  tedd

gruß tee

Bezug
                                
Bezug
Faltung im Zeitbereich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:07 Di 29.12.2009
Autor: tedd

ouh man ich glaube jetzt hab ich's endlich verstanden :D

Danke für die Hilfe (großer) fencheltee.

Also 3. Fall 2 [mm] \le [/mm] t < 4:

[mm] y(t)=\integral_{t-2}^{2}{2\cdot(-t+\tau+2)d\tau}=\integral_{t-2}^{2}{(-2*t+2*\tau+4)d\tau} [/mm]
[mm] =(-2*t*2+4+8)-(-2*t*(t-2)+(t-2)^2+4*(t-2)) [/mm]
[mm] =-4*t+12-(-2*t^2+4*t+t^2-2*t+4+4*t-8) [/mm]
[mm] =3*t^2-10*t+16 [/mm] wenn ich mich nicht verrechnet habe....

Für den 4ten Fall t [mm] \ge [/mm] 4 ist y(t)=0.

gruß,
tedd [ok]

Bezug
                                        
Bezug
Faltung im Zeitbereich: Antwort
Status: (Antwort) fertig Status 
Datum: 19:38 Di 29.12.2009
Autor: fencheltee


> ouh man ich glaube jetzt hab ich's endlich verstanden :D
>  
> Danke für die Hilfe (großer) fencheltee.

^^
ist aber nicht für ass oder?

>  
> Also 3. Fall 2 [mm]\le[/mm] t < 4:
>  
> [mm]y(t)=\integral_{t-2}^{2}{2\cdot(-t+\tau+2)d\tau}=\integral_{t-2}^{2}{(-2*t+2*\tau+4)d\tau}[/mm]
>  [mm]=(-2*t*2+4+8)-(-2*t*(t-2)+(t-2)^2+4*(t-2))[/mm]
>  [mm]=-4*t+12-(-2*t^2+4*t+t^2-2*t+4+4*t-8)[/mm]
>  [mm]=3*t^2-10*t+16[/mm] wenn ich mich nicht verrechnet habe....
>  
> Für den 4ten Fall t [mm]\ge[/mm] 4 ist y(t)=0.
>  
> gruß,
>  tedd [ok]

doch verrechnet, sonst wär dein y(t) nicht stetig ;-)
[mm] t^2-8*t+16 [/mm] sollte herauskommen

gruß tee

Bezug
                                                
Bezug
Faltung im Zeitbereich: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:57 Di 29.12.2009
Autor: tedd

Alles klar!

Danke für die Hilfe [ok]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Signaltheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]