www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Faltung F-Transformation
Faltung F-Transformation < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Faltung F-Transformation: Beweis
Status: (Frage) beantwortet Status 
Datum: 23:04 Mi 10.05.2006
Autor: nik03

Hallo,

Habe zu folgendem Beweis eine Frage:

[mm] F\left\{ ( f \*g )( k ) \right\} = \bruch{1}{2\pi} \integral_{0}^{2\pi}{( f \*g )( x ) * e^{-ikx} dx} = \bruch{1}{(2\pi)^{2}} \integral_{0}^{2\pi}\integral_{0}^{2\pi}{f ( x - y ) * g( y ) dy * e^{-ikx} dx} [/mm]
         [mm] = \bruch{1}{(2\pi)^{2}} \integral_{0}^{2\pi}\integral_{0}^{2\pi}{f ( x - y ) * e^{-ik(x-y)} * g( y ) * e^{-iky} dydx} [/mm]
         [mm] = \left( \bruch{1}{2\pi} \integral_{0}^{2\pi}\integral_{0}^{2\pi}{f ( x ) * e^{-ikx} dx} \right) * \left( \bruch{1}{2\pi} \integral_{0}^{2\pi}\integral_{0}^{2\pi}{g ( y ) * e^{-iky} dy} \right) = F\left\{ f( k )\right\}* F\left\{ g( k )\right\}[/mm]

Erste Zeile ist mir klar, hier wird die Definition der Faltung eingesetzt. Zweite Zeile ist mir in soweit klar das hier wohl mit [mm] \bruch{e^{iky} }{e^{iky}} [/mm] multipliziert wird. Der Schluss von der zweiten zur dritten Zeile ist mir aber nicht klar und auch nicht wie ich dann von dem Doppelintegral auf die Fouriertransformierte schliesse. Wenn ich die Definition von der Fouriertransformierten der jeweiligen Funktion einsetze bleibt nach der zweiten Integration doch ein [mm] 2\pi [/mm] übrig, da der Ausdruck [mm] \bruch{1}{2\pi} [/mm] doch zu der F-Tafo der Funktion gehört?

Vielleicht kann mir da jemand einen Tip geben...


Grüsse

Norbert

        
Bezug
Faltung F-Transformation: Antwort
Status: (Antwort) fertig Status 
Datum: 06:59 Do 11.05.2006
Autor: felixf

Hallo Norbert!

> Habe zu folgendem Beweis eine Frage:
>  
> [mm]F\left\{ ( f \*g )( k ) \right\} = \bruch{1}{2\pi} \integral_{0}^{2\pi}{( f \*g )( x ) * e^{-ikx} dx} = \bruch{1}{(2\pi)^{2}} \integral_{0}^{2\pi}\integral_{0}^{2\pi}{f ( x - y ) * g( y ) dy * e^{-ikx} dx}[/mm]
>  
>          [mm]= \bruch{1}{(2\pi)^{2}} \integral_{0}^{2\pi}\integral_{0}^{2\pi}{f ( x - y ) * e^{-ik(x-y)} * g( y ) * e^{-iky} dydx}[/mm]
>  
>          [mm]= \left( \bruch{1}{2\pi} \integral_{0}^{2\pi}\integral_{0}^{2\pi}{f ( x ) * e^{-ikx} dx} \right) * \left( \bruch{1}{2\pi} \integral_{0}^{2\pi}\integral_{0}^{2\pi}{g ( y ) * e^{-iky} dy} \right) = F\left\{ f( k )\right\}* F\left\{ g( k )\right\}[/mm]
>  
> Der Schluss von der zweiten zur dritten Zeile ist mir aber
> nicht klar und auch nicht wie ich dann von dem
> Doppelintegral auf die Fouriertransformierte schliesse.

Ich denke mal in der Zeile soll das [mm] $\int_0^{2\pi} \int_0^{2\pi}$ [/mm] jeweils nur ein [mm] $\int_0^{2\pi}$ [/mm] sein! Schliesslich tauch danach auch jeweils nur ein $dx$ bzw. $dy$ auf und nicht zwei wie es bei einem Doppelintegral der Fall sein muesste!

In dem Fall kommst du so von der 2. in die 3. Zeile:
- Du vertauscht erst mit Fubini die Reihenfolge der Integration.
- Dann holst du alles was nicht von x abhaengt aus dem Integral nach $x$ heraus.
- Das Verbleibende Intgral kannst du Umsubstitutionieren ($x - y$ durch $x$ ersetzen), dabei die Periodizitaet der Funktion ausnutzen!
- Dann kannst du das Intgral nach $x$ ganz aus dem Integral nach $y$ herausziehen, da es nicht mehr von $y$ abhaengt.

> Wenn ich die Definition von der Fouriertransformierten der
> jeweiligen Funktion einsetze bleibt nach der zweiten
> Integration doch ein [mm]2\pi[/mm] übrig, da der Ausdruck
> [mm]\bruch{1}{2\pi}[/mm] doch zu der F-Tafo der Funktion gehört?

Ich verstehe nicht ganz was du meinst. Wenn du einfach so tust das da jeweils nur ein Integral-Zeichen steht, hast du dann das Problem immernoch?

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]