www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Faltung
Faltung < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Faltung: Aufgabe
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:55 Mo 14.12.2009
Autor: math101

Aufgabe
[mm] \alpha [/mm] >0 [mm] f_{\alpha}(x)=exp(-\alpha x^2) [/mm] auf [mm] \IR. [/mm] Berechnen Sie [mm] f_\alpha \*f_\beta. [/mm]

Hallo, Leute!!
Sitze schon den halben Tag an der Aufgabe. Nach Definition der Faltung gilt:
[mm] f_\alpha \*f_\beta=\integral_{-\infty}^{\infty}{e^{-\alpha y^2}e^{-\beta(x-y)^2}dy}. [/mm] Aber ich kann das doch gar nicht integrieren, denn die Ableitung von der Potenz fehlt und einfach so sie dazu multipliezieren darf ich nicht.
Ich bräuchte dringend eure Hilfe.
Vielen-vielen Dank schon im Voraus!!!
Gruß

        
Bezug
Faltung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:56 Di 15.12.2009
Autor: MatthiasKr

Hallo,

> [mm]\alpha[/mm] >0 [mm]f_{\alpha}(x)=exp(-\alpha x^2)[/mm] auf [mm]\IR.[/mm] Berechnen
> Sie [mm]f_\alpha \*f_\beta.[/mm]
>  Hallo, Leute!!
>  Sitze schon den halben Tag an der Aufgabe. Nach Definition
> der Faltung gilt:
>  [mm]f_\alpha \*f_\beta=\integral_{-\infty}^{\infty}{e^{-\alpha y^2}e^{-\beta(x-y)^2}dy}.[/mm]
> Aber ich kann das doch gar nicht integrieren, denn die
> Ableitung von der Potenz fehlt und einfach so sie dazu
> multipliezieren darf ich nicht.
>  Ich bräuchte dringend eure Hilfe.
>  Vielen-vielen Dank schon im Voraus!!!
>  Gruß

immer der reihe nach. wie sieht dein ansatz aus und welche probleme treten auf? so, wie du hier argumentierst, koennen wir darueber nur spekulieren.

gruss
Matthias



Bezug
                
Bezug
Faltung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:05 Di 15.12.2009
Autor: math101

Hallo, Matthias!!
Vielen Dank für deine Antwort!!
[mm] f_\alpha \*f_\beta=\integral_{-\infty}^{\infty}{e^{-\alpha y^2}e^{-\beta(x-y)^2}dy}=\integral _{-\infty}^{\infty}{e^{-\alpha y^2-\beta x^2+2xy\beta-\beta y^2}dy}=e^{-\beta x^2}\integral_{-\infty}^{\infty}{e^{-\alpha y^2+2yx\beta-\beta y^2}dy}=e^{-\beta x^2}\integral_{-\infty}^{\infty}{e^{- y^2(\beta +\alpha)+2yx\beta}dy}. [/mm]
Jetzt muss ich eigentlich integrieren, aber ich hab in der Potenz wieder [mm] y^2 [/mm] stehen und die Ableitung davon ist: [mm] -2y(\beta+\alpha)+2x\beta. [/mm] Wenn die y nicht dabei wäre könnte ich die Ableitung einfach dazu multiplizieren und dann die Substitution anwenden, aber es geht nicht, weil ich, wenn ich die Ableitung dazu multipliziere, die Funktion ändere, und das darf ich doch nicht machen. An der Stelle komme ich nicht weiter.
Würde mich sehr freuen, wenn du mir hilfst!
Gruß

Bezug
                        
Bezug
Faltung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:40 Mi 16.12.2009
Autor: MathePower

Hallo math101,

> Hallo, Matthias!!
>  Vielen Dank für deine Antwort!!
>  [mm]f_\alpha \*f_\beta=\integral_{-\infty}^{\infty}{e^{-\alpha y^2}e^{-\beta(x-y)^2}dy}=\integral _{-\infty}^{\infty}{e^{-\alpha y^2-\beta x^2+2xy\beta-\beta y^2}dy}=e^{-\beta x^2}\integral_{-\infty}^{\infty}{e^{-\alpha y^2+2yx\beta-\beta y^2}dy}=e^{-\beta x^2}\integral_{-\infty}^{\infty}{e^{- y^2(\beta +\alpha)+2yx\beta}dy}.[/mm]
>  
> Jetzt muss ich eigentlich integrieren, aber ich hab in der
> Potenz wieder [mm]y^2[/mm] stehen und die Ableitung davon ist:
> [mm]-2y(\beta+\alpha)+2x\beta.[/mm] Wenn die y nicht dabei wäre
> könnte ich die Ableitung einfach dazu multiplizieren und
> dann die Substitution anwenden, aber es geht nicht, weil
> ich, wenn ich die Ableitung dazu multipliziere, die
> Funktion ändere, und das darf ich doch nicht machen. An
> der Stelle komme ich nicht weiter.


Jetzt musst Du eine Transformation finden,
die den quadratischen Ausdruck

[mm]y^2(\beta +\alpha)-2yx\beta}[/mm]

überführt in

[mm]a*u^{2}+b[/mm]


>  Würde mich sehr freuen, wenn du mir hilfst!
>  Gruß


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]