www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Faltung
Faltung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Faltung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:34 Fr 24.11.2006
Autor: Milka_Kuh

Aufgabe
a) Seien X,Y unabh. Zufallsvariablen mit Werten in  [mm] \IZ [/mm] und Verteilungen P bzw. Q. Z.z. X+Y hat die Verteilung mit Zähldichte P * Q({k})= [mm] \summe_{l \in \IZ}^{} [/mm] P({l})Q({k-l}), k [mm] \in \IZ. [/mm]
b)Seien X, Y unabh. identisch verteilte Zufallsvariablen mit Werten in [mm] \IZ_{+}. [/mm] Es gelte [mm] P(X=k|X+Y=n)=\bruch{1}{n+1} [/mm] für alle 0 [mm] \le [/mm] k [mm] \le [/mm] n.
Bestimme die Verteilung von X und von Y unter der Vorausetzung P(X=k)>0 für alle k [mm] \ge [/mm] 0 ist.

Hallo,

ich habe die Aufgabe gelöst, habe aber an manchen Stellen Schwierigkeiten und weiß nicht, wie es da weiter geht:
a) Hier bin ich folgendermaßen vorgegangen, un denke auch, dass es richtig ist:
[mm] P((X,Y)\in [/mm] A)= [mm] \summe_{X,Y \in A}^{} [/mm] f(x)f(y)= [mm] \summe_{X,Y}^{} [/mm] P(X=x)P(Y=y) = [mm] \summe_{X,Y}^{}P({{x}})*P({y})= \summe_{l \in \IZ}^{}P(X=l)Q(Y= l-k)=\summe_{}^{}P({l})Q({k-l}) [/mm] = [mm] \summe_{}^{}f(l)= [/mm] P * Q({k})

In der Rechnung habe ich A [mm] ={(x,y)\in \IZ^{2}: x+y=k, \forall k \in \IZ } [/mm] definiert. Dann habe ich gegen Ende X=l gesetzt und dann substituiert:  aus x+y =k in A folgt: y=k-x=k-l. die f's sind hier die diskreten Dichtefunktionen.
Stimmt das so? :-)
zur b) Es gilt ja: [mm] \bruch{1}{n+1}= [/mm] P(X=k|X+Y=n) = [mm] \bruch{P(X=k,X+Y=n)}{P(X+Y=n)} [/mm]
Aber kann ich jetzt den Zähler als Produkt schreiben wegen der Unabhängigkiet von X und Y?
Die Vert. von X ist: P(X=k). Die ist nach Vor. >0.
Ich komme hier nicht richtig weiter. Wie komme ich jetzt auf die gesuchten Verteilungen von X und Y?
Es wäre schön, wenn mir jmd. helfen könnte.
Vielen Dank.
Milka

        
Bezug
Faltung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:21 Do 30.11.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]