www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Faktorraum eines Vektorraums
Faktorraum eines Vektorraums < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Faktorraum eines Vektorraums: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:58 Di 21.09.2010
Autor: xubix

Aufgabe
Sei V=R³ und U = {(x,y,z)€V|2x-y+z=0} <= V.
[...]
Fortsetzung: Bestimmen Sie rechnerisch (ohne geometrisch zu argumentieren) den Faktorraum V/~U. Beweisen Sie eventuelle Vermutungen! [...]


Ich habe versucht, dieses Beispiel auf zwei Arten zu lösen:

Einmal über die Definition der linearen Mannigfaltigkeit, dann erhalte ich folgendes:

V/~U = {{v+U}|v€V} =
{{v+u|u€U}|v€V} =
{{v+(x,y,z)|2x-y+z=0}|v€V}

So weit, so gut. Wenn ich das Beispiel jetzt aber über die Definition der Äquivalenzrelation löse (v ~ w <=> v-w € U), dann erhalte ich folgendes:

V/~U = {{u|v-u € U}|v € V}
= [v-u in 2x-y+z=0 eingesetzt und dann alle v's nach rechts und in ein c zusammengefasst] = {{u|2*u1-u2+u3=c}|c € IR}

Jetzt zu meiner Frage: Warum habe ich bei der zweiten Methode ein c als Parameter und bei der ersten nicht? Habe ich einen Fehler gemacht oder gibt es dafür eine Erklärung?

Danke!

P.S.: Bitte verzeiht mir, dass ich nicht das Formelsystem verwendet habe, ich denke dass dieses Beispiel dennoch gut lesbar sein sollte.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Faktorraum eines Vektorraums: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:17 Di 21.09.2010
Autor: xubix

Okay, erst denken, dann posten. Ich habe mir die Frage gerade selbst beantwortet; im ersten Fall ist natürlich das v der "Parameter". Bitte ignorieren.

Bezug
        
Bezug
Faktorraum eines Vektorraums: Antwort
Status: (Antwort) fertig Status 
Datum: 08:56 Mi 22.09.2010
Autor: angela.h.b.


> Sei V=R³ und U = {(x,y,z)€V|2x-y+z=0} <= V.
>  [...]
>  Fortsetzung: Bestimmen Sie rechnerisch (ohne geometrisch
> zu argumentieren) den Faktorraum V/~U. Beweisen Sie
> eventuelle Vermutungen! [...]

Hallo,

[willkommenmr].

Ich möchte Deine Frage lieber doch nicht ignorieren, sondern Dir zeigen, wie es geht. Die passenden Begründungen müßtest Du Dir hier und da noch selbst überlegen.

Dein Untervektorraum U ist zweidimensional, eine Basis ist [mm] (\v_1:=vektor{1\\2\\0}, v_2:=\vektor{1\\0\\-2}). [/mm]
U wird von diesen beiden Vektoren erzeugt, es ist also [mm] U=<\vektor{1\\2\\0}, \vektor{1\\0\\-2}>. [/mm]

Die Basis von U kann ich durch [mm] v_3:=\vektor{1\\0\\0} [/mm] zu einer Basis des [mm] \IR^3 [/mm] ergänzen.
Jedes Element v des [mm] \IR^3 [/mm] kann ich eindeutig schreiben als [mm] a_1v_1+a_2v_2+a_3v_3 [/mm] mit [mm] a_i\in \IR. [/mm]

Die Elemente des Raumes V/U haben die Gestalt [mm] v+U=a_1v_1+a_2v_2+a_3v_3+U=a_1v_1+a_2v_2+a_3v_3+. [/mm]

Es ist [mm] a_1v_1+a_2v_2+a_3v_3+ [/mm] = [mm] a_3v_3+ . [/mm]

Also sehen die Elemente des V/U so aus: [mm] \vektor{a\\0\\0}+U [/mm] mit [mm] a\in \IR, [/mm]
dh. [mm] V/U=\{\vektor{a\\0\\0}+U| a\in \IR\}. [/mm]
[mm] v_3+U [/mm] ist eine Basis des V/U.

Gruß v. Angela




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]