www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Extremwertproblem: Zeit min.
Extremwertproblem: Zeit min. < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertproblem: Zeit min.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:57 So 11.12.2011
Autor: Benja91

Aufgabe
Die Küstenwache bemerkt im Meer eine Person in Not. Sie befindet ich 300 Meter weiter entlang der Küste und 100 m ins Meer hinein. Der Retter läuft mit eine Geschwindigkeit von 5 m/s und schwimm mit 3 m/s. Wo geht der Retter am Besten ins Wasser um so schnell wie möglich bei der Person zu sein.

Hallo :)

Ich habe diese Frage in keinem anderen Forum gestellt:

Es geht ja nun erstmal darum um die Zeit zu minimalisieren --> [mm] t=\bruch{s}{v} [/mm] .
Ich habe nun erstmal eine Gleichung für die Zeit aufgestellt:
[mm] t=s1*5\bruch{m}{s} [/mm] + [mm] s2*3\bruch{m}{s} [/mm]
[mm] \gdw t=s1*5\bruch{m}{s} [/mm] + [mm] \wurzel{s1^{2}+\varepsilon^{2}} [/mm]
[mm] \varepsilon [/mm] ist bei mir die Strecke, die der Retter am Land entlangläuft.

Allerdings weiß ich nun nicht mehr recht, wie ich weitermachen soll.
Es wäre toll, wenn mir jemand helfen könnte.

Gruß
Benja

        
Bezug
Extremwertproblem: Zeit min.: Antwort
Status: (Antwort) fertig Status 
Datum: 11:09 So 11.12.2011
Autor: fred97


> Die Küstenwache bemerkt im Meer eine Person in Not. Sie
> befindet ich 300 Meter weiter entlang der Küste und 100 m
> ins Meer hinein. Der Retter läuft mit eine Geschwindigkeit
> von 5 m/s und schwimm mit 3 m/s. Wo geht der Retter am
> Besten ins Wasser um so schnell wie möglich bei der Person
> zu sein.
>  Hallo :)
>
> Ich habe diese Frage in keinem anderen Forum gestellt:
>
> Es geht ja nun erstmal darum um die Zeit zu minimalisieren
> --> [mm]t=\bruch{s}{v}[/mm] .
>  Ich habe nun erstmal eine Gleichung für die Zeit
> aufgestellt:
> [mm]t=s1*5\bruch{m}{s}[/mm] + [mm]s2*3\bruch{m}{s}[/mm]
>  [mm]\gdw t=s1*5\bruch{m}{s}[/mm] + [mm]\wurzel{s1^{2}+\varepsilon^{2}}[/mm]
>  [mm]\varepsilon[/mm] ist bei mir die Strecke, die der Retter am
> Land entlangläuft.

????   Das ist doch [mm] s_1 [/mm]  !!!

Mit Pythagoras ist [mm] s_2^2=(300-s_1)^2+100^2 [/mm]

FRED

>
> Allerdings weiß ich nun nicht mehr recht, wie ich
> weitermachen soll.
>  Es wäre toll, wenn mir jemand helfen könnte.
>
> Gruß
>  Benja


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]