www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Extremwertproblem Tetraeder
Extremwertproblem Tetraeder < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertproblem Tetraeder: Ansatz,Lösung
Status: (Frage) beantwortet Status 
Datum: 11:13 Di 09.02.2010
Autor: shikari66

hallo zusammen,

bin in der vorbereitung für eine mathe klausur und möchte die folgende aufgabe berechnen in der vorbereitung.

Aufgabe:
Ein gegebenens Dreieck mit den Seiten a,b,c sei die Grundfläche eines Tetraeders mit der festgelegten Höhe h, dessen Spitze M noch nicht fixiert ist. Der Lotfußpunkt M* der Pyramidenspitze M auf der Grundfläche sei gekennzeichnet duch die Zahlen x,y,z , die die Längen des Lotes von M* auf die jeweiligen Dreiecksseiten angeben.
Man ermittle die Lage der Pyramidenspitze, charakterisiert durch x,y,z derart, dass die Mantelfläche des Tetraeders minimal wird.
Hinweise:
1) Hilfreich ist zu verifizieren, dass für den Flächeninhalt A der Grudfläche des Tetraeders gilt ax+by+cz=2A.
2) Hinreichende Optimalitätsbedingung muss nicht geprüft werden.


[Dateianhang nicht öffentlich]
Ich weiß, dass das Forum vorschreibt eigene Ansätze anzubieten. Leider hängt es hier bei mir am Ansatz. Weiß nicht so richtig wie ich vorgehen muss. Würde mich freuen wenn jemand mir zur Lösung verhelfen kann.

LG

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Extremwertproblem Tetraeder: Antwort
Status: (Antwort) fertig Status 
Datum: 11:52 Di 09.02.2010
Autor: abakus

Hallo
die (schräg im Raum liegende) Höhen einer schrägen Seitenflächen bildet zusammen mit der Körperhöhe h und der Lotlänge im Grunddreieck (z.B. x) ein rechtwinkliges Dreieck.
Es gilt [mm] h_{Fläche}^2=h^2+x^2 [/mm] (mit y und z analog).
Gruß Abakus

Bezug
                
Bezug
Extremwertproblem Tetraeder: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:40 Fr 19.02.2010
Autor: shikari66

Hallo, danke für die Antwort. Tut mir leid das ich mich so spät wieder melde, hatte noch andere Klausuren offen. Nun ist Mathematik an der Reihe...
Komm hier leider nicht weiter. Was mache ich mit den drei Gleichungen für die rechtwinkligen Dreiecke? Die Höhe des Tetraeders bleibt konstant, aber x,y,z und die Höhen der Außenflächen ändern sich ja, je nach Anordnung. Spielen die Flächeninhalte der drei rechtwinkligen Dreiecke eine Rolle (Minimum der Addition der Flächen) oder bin ich da auf dem falschen Weg?
Danke im Vorraus

Bezug
                        
Bezug
Extremwertproblem Tetraeder: Antwort
Status: (Antwort) fertig Status 
Datum: 09:33 Fr 19.02.2010
Autor: abakus


> Hallo, danke für die Antwort. Tut mir leid das ich mich so
> spät wieder melde, hatte noch andere Klausuren offen. Nun
> ist Mathematik an der Reihe...
>  Komm hier leider nicht weiter. Was mache ich mit den drei
> Gleichungen für die rechtwinkligen Dreiecke? Die Höhe des
> Tetraeders bleibt konstant, aber x,y,z und die Höhen der
> Außenflächen ändern sich ja, je nach Anordnung. Spielen
> die Flächeninhalte der drei rechtwinkligen Dreiecke eine
> Rolle (Minimum der Addition der Flächen) oder bin ich da
> auf dem falschen Weg?
>  Danke im Vorraus

Berechne die Flächeninhalte der Dreiecke ABM, BCM und ACM.
Dazu brauchst du jeweils eine Grundseite (hast du mit a, b, c) und eine Höhe der jeweiligen Fläche.
Letztere berechnest du mit Pythagoras aus h und x, h und y bzw. h und z (h ist hier die Körperhöhe).
Addiere die drei Flächen, und du hast einen Term für die Mantelfläche, der von x, y und z abhängt.

DANACH kannst du schauen, wie du eine (oder sogar zwei) der drei Variablen loswerden kannst.
Bis dahin hast du aber erst mal etwas zu tun.
Gruß Abakus

Bezug
                                
Bezug
Extremwertproblem Tetraeder: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:30 Sa 20.02.2010
Autor: shikari66

Also müsste für die Mantelfläche [mm] \bruch{1}{2}a(h^{2}+x^{2})+\bruch{1}{2}b(h^{2}+y^{2})+\bruch{1}{2}c(h^{2}+z^{2}) [/mm] gelten. Dies soll minimal werden.
Ist das im Hinweis gegebene meine Nebenbedingung?
[mm] L(x,y,z,\lambda)= \bruch{1}{2}a(h^{2}+x^{2})+\bruch{1}{2}b(h^{2}+y^{2})+\bruch{1}{2}c(h^{2}+z^{2})+\lambda(ax+by+cz-2A) [/mm] ?!?
Wenn ich damit weiterrechne komme ich auf [mm] x=y=z=\bruch{2A}{(a+b+c)} [/mm] ?!?


Bezug
                                        
Bezug
Extremwertproblem Tetraeder: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:32 So 21.02.2010
Autor: shikari66

um die fälligkeitszeit zu erhöhen, nochmal ...

Also müsste für die Mantelfläche [mm] \bruch{1}{2}a(h^{2}+x^{2})+\bruch{1}{2}b(h^{2}+y^{2})+\bruch{1}{2}c(h^{2}+z^{2}) [/mm] gelten. Dies soll minimal werden.
Ist das im Hinweis gegebene meine Nebenbedingung?
[mm] L(x,y,z,\lambda)= \bruch{1}{2}a(h^{2}+x^{2})+\bruch{1}{2}b(h^{2}+y^{2})+\bruch{1}{2}c(h^{2}+z^{2})+\lambda(ax+by+cz-2A) [/mm] ?!?
Wenn ich damit weiterrechne komme ich auf [mm] x=y=z=\bruch{2A}{(a+b+c)} [/mm] ?!?

Bezug
                                                
Bezug
Extremwertproblem Tetraeder: Antwort
Status: (Antwort) fertig Status 
Datum: 13:30 So 21.02.2010
Autor: abakus


> um die fälligkeitszeit zu erhöhen, nochmal ...
>  
> Also müsste für die Mantelfläche
> [mm]\bruch{1}{2}a(h^{2}+x^{2})+\bruch{1}{2}b(h^{2}+y^{2})+\bruch{1}{2}c(h^{2}+z^{2})[/mm]
> gelten. Dies soll minimal werden.
>  Ist das im Hinweis gegebene meine Nebenbedingung?

Die NB erlaubt dir,  ax+by+cz=2A z.B. nach z umzustellen und in der bisherigen Gleichung
für die Mantelfläche (in der du die drei Wurzelzeichen vergessen hast) z durch (2A+ax-by)/c zu ersetzen.
Gruß Abakus

>  [mm]L(x,y,z,\lambda)= \bruch{1}{2}a(h^{2}+x^{2})+\bruch{1}{2}b(h^{2}+y^{2})+\bruch{1}{2}c(h^{2}+z^{2})+\lambda(ax+by+cz-2A)[/mm]
> ?!?
>  Wenn ich damit weiterrechne komme ich auf
> [mm]x=y=z=\bruch{2A}{(a+b+c)}[/mm] ?!?


Bezug
                                                        
Bezug
Extremwertproblem Tetraeder: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:13 So 21.02.2010
Autor: shikari66

Hallo, das hatte ich auch schon probiert gehabt, aber nix sinnvolles rausbekommen...

Hier nochmal die Funktion mit eingesetztem z:

[mm] M(x,y)=\bruch{1}{2}a\wurzel{h^{2}+x^{2}}+\bruch{1}{2}b\wurzel{h^{2}+y^{2}}+\bruch{1}{2}c\wurzel{h^{2}+(\bruch{2A-ax-by}{c})^{2}} [/mm]
Nun hab ich ne Gleichung der Mantelfläche die nur von x und y abhängt...
Jetzt hab ich versucht nach x und y abzuleiten...

[mm] M_{x}=\bruch{x}{\wurzel{h^{2}+x^{2}}}-\bruch{2A-ax-by}{c\wurzel{h^{2}+\bruch{(2A-ax-by)^{2}}{c^{2}}}} [/mm]

[mm] M_{y}=\bruch{x}{\wurzel{h^{2}+y^{2}}}-\bruch{2A-ax-by}{c\wurzel{h^{2}+\bruch{(2A-ax-by)^{2}}{c^{2}}}} [/mm]

stimmt aber sicher nicht, weil hier auch nur wieder x=y entsteht.
ich probiers weiter, aber vllt kannst du mir noch einen schubs in die richtige richtung geben.

Bezug
                                                                
Bezug
Extremwertproblem Tetraeder: Antwort
Status: (Antwort) fertig Status 
Datum: 19:32 So 21.02.2010
Autor: abakus


> Hallo, das hatte ich auch schon probiert gehabt, aber nix
> sinnvolles rausbekommen...
>  
> Hier nochmal die Funktion mit eingesetztem z:
>  
> [mm]M(x,y)=\bruch{1}{2}a\wurzel{h^{2}+x^{2}}+\bruch{1}{2}b\wurzel{h^{2}+y^{2}}+\bruch{1}{2}c\wurzel{h^{2}+(\bruch{2A-ax-by}{c})^{2}}[/mm]
>  Nun hab ich ne Gleichung der Mantelfläche die nur von x
> und y abhängt...
>  Jetzt hab ich versucht nach x und y abzuleiten...
>  
> [mm]M_{x}=\bruch{x}{\wurzel{h^{2}+x^{2}}}-\bruch{2A-ax-by}{c\wurzel{h^{2}+\bruch{(2A-ax-by)^{2}}{c^{2}}}}[/mm]
>  
> [mm]M_{y}=\bruch{x}{\wurzel{h^{2}+y^{2}}}-\bruch{2A-ax-by}{c\wurzel{h^{2}+\bruch{(2A-ax-by)^{2}}{c^{2}}}}[/mm]
>  
> stimmt aber sicher nicht, weil hier auch nur wieder x=y
> entsteht.

Hallo,
vielleicht IST das ja das richtige Ergebnis? Es gibt ja einen Punkt der Grundfläche, der von allen 3 Seiten gleich weit entfernt ist (Inkreismittelpunkt).
Gruß Abakus

> ich probiers weiter, aber vllt kannst du mir noch einen
> schubs in die richtige richtung geben.  


Bezug
                                                                        
Bezug
Extremwertproblem Tetraeder: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 20:36 So 21.02.2010
Autor: shikari66

Wenn das der Fall wäre müssten ja x,y,z Radius des Innenkreises sein und damit [mm] \bruch{2A}{a+b+c} [/mm] gelten. Das kann ich jetzt aber noch nicht sehen.  z kann doch noch von x und y verschieden sein.
Also muss ich doch erstmal die Werte für x, y und damit für z finden, oder?
Setze ich also zum Bsp. in [mm] M_{x} [/mm] für y=x ein, dann bekomm ich die Länge der zwei Strecken x,y? Und die setze ich wiederum in die Nebenbedingung ein, um  z zu bekommen?

Bezug
                                                                                
Bezug
Extremwertproblem Tetraeder: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:08 So 21.02.2010
Autor: shikari66

hab das mal durchgerechnet und ich komme wirklich auf x=y=z=2A/(a+b+c)! d.h die Mantelfläche  des Tetraeders wird minimal wenn der Lotfußpunkt der Mittelpunkt und x,y,z=r der Radius des Inkreises ist! Stimmt das so?

Kleine Frage:Wenn da in der Aufgabenstellung steht : "Es ist hilfreich zu verifizieren, ...", sollte man da die Gleichung nochmal auf Gültigkeit prüfen oder einfach als Gegeben verwenden?



Bezug
                                                                                        
Bezug
Extremwertproblem Tetraeder: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:11 So 21.02.2010
Autor: abakus


> hab das mal durchgerechnet und ich komme wirklich auf
> x=y=z=2A/(a+b+c)! d.h die Mantelfläche  des Tetraeders
> wird minimal wenn der Lotfußpunkt der Mittelpunkt und
> x,y,z=r der Radius des Inkreises ist! Stimmt das so?
>  
> Kleine Frage:Wenn da in der Aufgabenstellung steht : "Es
> ist hilfreich zu verifizieren, ...", sollte man da die
> Gleichung nochmal auf Gültigkeit prüfen oder einfach als
> Gegeben verwenden?

Das müsstest du schon nachweisen, ist aber simpel.
Von dem bewussten inneren Punkt des Dreiecks, in dem die Strecken der Längen x, y und z zusammenstoßen, kannst du die Verbindungen zu den 3 Eckpunken A, B und C einzeichnen.
Die so entsteenden Teildreiecke haben den Inhalt 0,5ax bzw 0,5by bzw. 0,5cz (und ergeben in ihrer Summe den Gesamtflächeninhalt A).
Gruß Abakus

>  
>  


Bezug
                                                                                                
Bezug
Extremwertproblem Tetraeder: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:52 So 21.02.2010
Autor: shikari66

ok, das ist echt einfach.

Vielen Dank für deine Hilfe!!

Bezug
                                        
Bezug
Extremwertproblem Tetraeder: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:09 Mo 22.02.2010
Autor: shikari66

hm was ist dann der richtige ansatz? könnt ihr mir nochmal helfen, würde das echt gerne rausbekommen...

vllt über den umkreis der grundfläche bzw. der umkugel des tetraeders???

Bezug
                                                
Bezug
Extremwertproblem Tetraeder: Antwort
Status: (Antwort) fertig Status 
Datum: 19:26 Mo 22.02.2010
Autor: leduart

Hallo
es tut mir sehr leid. Ich hab wohl gestern zu lang am Computer gesessen. Abakus hatte in Wirklichkeit recht, und all deine Rechungen sind in Ordnung. Ich werd meine dumme Korrektur verbessern.
Gruss leduart

Bezug
                                                        
Bezug
Extremwertproblem Tetraeder: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:32 Mo 22.02.2010
Autor: shikari66

kein problem,
finds gut das ihr eure Zeit opfert um Anderen zu helfen.
Sowas passiert dann halt mal.
Macht weiter so.
LG

Bezug
                                
Bezug
Extremwertproblem Tetraeder: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 01:10 Mo 22.02.2010
Autor: leduart

Edit: meine Bemerkung war falsch und dumm, die Lote treffen sich wie abakus gesagt hat.
Hallo
Die Lotfusspunkte auf der Grundseite sind i.A. nicht die Lotfusspunkte der Höhen der Seitenflächen. Deshalb geht das nicht mit dem Pythagoras.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]