www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Extremwertproblem Mathe GK 12
Extremwertproblem Mathe GK 12 < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertproblem Mathe GK 12: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 18:25 Fr 15.10.2004
Autor: Dawson

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich habe ein riesiges Problem, muss eine Aufgabe lösen, die ich nicht verstehe! Es wäre super wenn mir vielleicht jemand von euch weiterhelfen könnte!

Die Aufgabe lautet:
Das gleichseitige Dreieck ABC mit der Seitenlänge 3 cm wird längs DE so gefaltet, dass das Dreieck DBE senkrecht zum ursprünglichen Dreieck steht.
Verbindet man B mit A und C, so entsteht eine Pyramide.
Für welche Streckenlänge x wird das Volumen dieser Pyramide maximal?



Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
        
Bezug
Extremwertproblem Mathe GK 12: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:49 Fr 15.10.2004
Autor: Grizzlitiger

Hast du da eine Zeichnung oder so etwas?

Bezug
        
Bezug
Extremwertproblem Mathe GK 12: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:53 Fr 15.10.2004
Autor: Benni_K

Hallo!

Also die Aufgabe leuchtet mir auf, aber es sind recht wenig Informationen in der Aufgabe. Der Punkt D ist ja der Mittelpunkt der Strecke AC wenn ich mich nicht täusche. Man weiß die Seiten des ursprünglichen Dreiecks, aber welche Strecke ist mit x gemeint.

Ich denke, wenn die Aufgabe so in einem Buch stand, war ganz sicher eine Vorskizze dabei.

Könntest du uns das Problem etwas genauer schildern.


Danke!

Benni

Bezug
                
Bezug
Extremwertproblem Mathe GK 12: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:14 Sa 16.10.2004
Autor: Grizzlitiger

Ja etwas mehr INformationen wären hilfreich ;) aber ich denke nicht, dass der Punkt D die Mitte zwischen A un C sein muss, ich denke die Distanz zwischen D und A wird mit x angegeben, weil der Punkt D ja zwischen A und C irgendwo liegen muss, und wo der liegt bestimmt das Volumen der entstehenden Pyramide. Ansonsten glaube ich ist die Aufgabe auch nicht ganz einwandfrei gestellt, glaub ich zumindest, denn wenn das Dreieck senkrecht auf dem anderen steht, dann kann keine Pyramide entstehen denn der Winkel zwischen Grundfläche und Mantelfläche ist bei einer Pyramide ja niemals 90 Grad.
MfG Grizzlitiger ^^

Bezug
        
Bezug
Extremwertproblem Mathe GK 12: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:36 Sa 16.10.2004
Autor: Dawson

Tut mir leid hab vergessen die Skizze anzuhängen! :/
Ich hoffe ihr helft mir noch einmal!
Danke schonmal für euere bisherige Hilfe!
[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Bezug
                
Bezug
Extremwertproblem Mathe GK 12: Idee
Status: (Antwort) fertig Status 
Datum: 16:53 Sa 16.10.2004
Autor: Hanno

Hi Dawson!

Gut, dass du nun das Bild angehängt hast, dass gibt einiges an Aufschluss darüber, wie die Aufgabe zu lösen ist.
Ich würde da wie folgt rangehen:

Das Volumen der Pyramide erhältst du, indem die Fläche des Trapezes ACED errechnest und nach der bekannten Formel für das Volumen einer Pyramide das gesuchte zu optimierende Volumen errechnest. Die Höhe, als Tip, lässt sich leicht über den Kosinus errechnen, und den Winkel [mm] $\angle [/mm] EBD$ kennst du.

Hilft dir das?

Liebe Grüße,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]