www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Extremwerte + totale Ableitung
Extremwerte + totale Ableitung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwerte + totale Ableitung: Definition nicht verstehe
Status: (Frage) beantwortet Status 
Datum: 14:06 Mi 29.08.2007
Autor: makw

Aufgabe
M [mm] \subset R^{n}, [/mm] f:M->R stetig. Sei a [mm] \in [/mm] M.
a ist ein relatives Extremum, wenn es eine offene Umgebung  U gibt, so dass f(a)>f(x) oder f(a)<f(x) [mm] \forall [/mm] x [mm] \in [/mm] M [mm] \cap [/mm] U.

Nun habe ich Probleme im Verstaendnis dieser Definition oder anderen aus den Buechern, die sich mit Extremwerte und Maxima und Minima beschaeftigen. Kann jemand anhand eines einfaches Beispieles erklaeren, wie ich solche Punkte berechnen kann? Wenn es irgentwie geht, ein Beispiel fuer die totale Ableitung waere auch gut oder wenigstens eine Anleitung.
Vielen Dank im Voraus, vielen Dank.

        
Bezug
Extremwerte + totale Ableitung: Beispiel
Status: (Antwort) fertig Status 
Datum: 14:45 Mi 29.08.2007
Autor: subclasser

Hallo, makw!

Dann gebe ich dir mal ein einfaches Beispiel $f(x,y) = [mm] x^2 [/mm] + [mm] y^2$. [/mm] Die Funktion ist offensichtlich stetig und hat ein striktes lokales Minimum im Ursprung des Koordinatensystems. Dann wollen wir das auch einmal nachrechnen. Das funktioniert fast genauso wie im Eindimensionalen.

Als erstes brauchen wir die Ableitung, den sogenannten Gradienten. Dazu bestimmt's du einfach die partiellen Ableitungen der Funktion
[mm] $$\frac{\partial f}{\partial x} [/mm] (x,y) = 2x [mm] \quad \frac{\partial f}{\partial y} [/mm] (x,y) = 2y$$
Da die partiellen Ableitungen stetig(!) sind, haben wir auch schon die totale Ableitung gefunden
[mm] $$\nabla [/mm] f(x,y) = (2x, 2y)$$
Nun suchen wir unsere kritischen Punkte: Eine notwendige Bedingung für ein lokales Extrema ist [mm] $\nabla [/mm] f(x,y) = (0,0)$. Es kommt also nur der Nullpunkt in Frage. Nun müssen wir noch wie im eindimensionalen die hinreichende Bedingung zu Rate ziehen. Dazu brauchen wir die zweiten partiellen Ableitungen.
[mm] $$\frac{\partial^2 f}{\partial x^2} [/mm] (x,y) = 2  [mm] \quad \frac{\partial^2 f}{\partial x \partial y} [/mm] (x,y) = 0 [mm] \quad \frac{\partial^2 f}{\partial y \partial x} [/mm] (x,y) = 0 [mm] \quad \frac{\partial^2 f}{\partial y^2} [/mm] (x,y) = 2$$
Damit lautet die Hessematrix am Ursprung
$$Hess f(0,0) = [mm] \begin{pmatrix}2 & 0 \\ 0 & 2 \end{pmatrix}$$ [/mm]
Diese ist offensichtlich postiv definit (Analog zu [mm] $f'(x_0) [/mm] > 0$). Damit ist die hinreichende Bedingung erfüllt und es liegt ein Minimum im Ursprung vor (in diesem Beispiel kannst du sogar jede Umgebung um den Ursprung wählen).

Ich hoffe, das hilft ein wenig weiter!

Gruß!

Bezug
                
Bezug
Extremwerte + totale Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:59 Do 06.09.2007
Autor: makw

danke


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]