www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Extremwerte
Extremwerte < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:38 Di 27.11.2007
Autor: Tigerbaby001

Aufgabe
Zeigen Sie, dass jede quadratische Funktion der Form f(x) = [mm] ax^2 [/mm] + bx + c genau
einen kritischen Punkt auf ganz ℜbesitzt.

Da ich hier so tolle Hilfe bekomme, löcher ich Euch nun ein wenig...... Vielleicht versteh ich es dann endlich mal...

Also, ich soll das irgendwie beweisen.... Ich weiß ja, das es so ist, da es eine quadratische Funktion ist.... aber wie kann ich so etwas beweisen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Extremwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 19:38 Di 27.11.2007
Autor: Kyrill

Hallo Tigerbaby,
du kennst ja die notwendige Bedingung für einen Extremwert. Wenn du dir mal die Ableitung f'(x) ansiehst und überlegst wieviele Nullstellen diese haben kann. Das musst du denn nur noch hinschreiben.

Kyrill



Bezug
                
Bezug
Extremwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:03 Di 27.11.2007
Autor: Tigerbaby001

Also die Ableitung ist 2ax+b    2.te Ableitung: 2a

so.... nun sollte f´(0) = 0 sein und f´´(x) ungleich null...

Aber die erste Bedingung ist doch nicht erfüllt... da kommt doch b raus... die zweite Bedingung ist erfüllt wenn a ungleich null ist....

Oder bin ich jetzt irgendwie falsch......?

Bezug
                        
Bezug
Extremwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 20:07 Di 27.11.2007
Autor: Tyskie84

Hallo

f´(x) soll 0 sein nicht f´(0)=0 das ist was anderes... dann bekommst du raus dass x = -b/2a sein muss

Gruß

Bezug
                                
Bezug
Extremwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:19 Di 27.11.2007
Autor: Tigerbaby001

Aufgabe
Zeigen Sie, dass jede quadratische Funktion der Form f(x) = ax2 + bx + c genau
einen kritischen Punkt auf ganz ℜbesitzt.

Okay...das ist mir klar...

Dann habe ich für die erste Ableitung 2ax stehen wobei x=-b/2a ist  und für die 2.te Ableitung habe ich 2a da stehen.... a darf nicht gleich null ein....

Aber wie beweise ich hiermit, dass jede quatratische Funktion genau einen kritischen Punkt besitzt?

Bezug
                                        
Bezug
Extremwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 20:25 Di 27.11.2007
Autor: M.Rex

Hallo

Wieviele Punkte mit [mm] x=\bruch{-b}{2a} [/mm] gibt es denn? Und du weisst, dass das ein Extremwert ist, das hast du gerade gezeigt.

Marius

Bezug
                                        
Bezug
Extremwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 20:28 Di 27.11.2007
Autor: Tyskie84

Hi!

a darf nicht 0 sein? du musst jetzt das rechnen: f´´(-b/2a) =....dann bekommst du was raus was nicht 0 ist und setzt das dann in deine ausgangsfkt ein und du bist fertig

Gruß

Bezug
                                                
Bezug
Extremwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:04 Di 27.11.2007
Autor: Tigerbaby001

Ihr müsst mich für total bescheuert halten.... aber wie soll ich denn in f´´(x)  -b/2a einsetzen? f´´= 2a....
Ich setzte doch für alle x  -b/2a ein..... bei f´´ gibt es aber kein x dass ich damit ersetzten könnte.......



Bezug
                                                        
Bezug
Extremwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 21:18 Di 27.11.2007
Autor: Tyskie84

Hi

Deine 2. Ableitung ist 2a. Gut. Also ist das doch ungleich 0!!! Also Bed erfüllt.  Den Kandidaten den du in der ersten ableitung berechnet hast setzt du jetzt in deine ausgangsfunktion ein und du bist fertig...Versuch mal das hier aufzuschreiben dann können wir dir besser helfen. Dann sehen wir direkt wo dein problem liegt.

Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]