www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Extremwertbestimmung
Extremwertbestimmung < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertbestimmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:48 Mi 13.12.2006
Autor: angreifer

Aufgabe
Bestimmen Sie den Tiefpunkt (Minimum) der Funktion f mit f(x)= [mm] x^{2} [/mm] + [mm] e^{2(x+1)} [/mm] und f'(x) = 2x + [mm] 2e^{2(x+1)} [/mm] und verwenden sie beim Lösen der Gleichung auf geeignete Weise das Heron-Verfahren!

Hier einmal mein Lösungsansatz:

f'(x) = 0:

2x + [mm] 2e^{2(x+1)} [/mm] = 0

Aber wie geht es von diesem Punkt an weiter?
Weiß nicht wie man die Gleichung geeignet umformen muss um sie ins Heron-Verfahren einsetzen zu können!

Bedanke mich schon mal im Voraus für eure Hilfe!




        
Bezug
Extremwertbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:53 Do 14.12.2006
Autor: informix

Hallo angreifer,

> Bestimmen Sie den Tiefpunkt (Minimum) der Funktion f mit
> f(x)= [mm]x^{2}[/mm] + [mm]e^{2(x+1)}[/mm] und f'(x) = 2x + [mm]2e^{2(x+1)}[/mm] und
> verwenden sie beim Lösen der Gleichung auf geeignete Weise
> das Heron-Verfahren!
>  Hier einmal mein Lösungsansatz:
>  
> f'(x) = 0:
>  
> [mm] 2x+2e^{2(x+1)}=0 [/mm]
>  
> Aber wie geht es von diesem Punkt an weiter?

teile die Gleichung durch 2 und zeichne die beiden Terme getrennt als Funktionen, du erkennst sehr schnell, dass sie sich bei x=-1 schneiden.
In der Gegend kannst du dann ja deine Näherung ansetzen...

Ich glaube aber nicht, dass du die Näherung brauchst...

>  Weiß nicht wie man die Gleichung geeignet umformen muss um
> sie ins Heron-Verfahren einsetzen zu können!
>  


Gruß informix

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]